Spaces:
Sleeping
Sleeping
UPDATE: chat history retention
Browse files- functions.py +3 -2
functions.py
CHANGED
@@ -180,6 +180,7 @@ def answerQuery(query: str, vectorstore: str, llmModel: str = "llama3-70b-8192")
|
|
180 |
global prompt
|
181 |
global client
|
182 |
global embeddings
|
|
|
183 |
vectorstore = QdrantVectorStore.from_existing_collection(
|
184 |
embedding = embeddings,
|
185 |
collection_name=vectorstore,
|
@@ -197,7 +198,7 @@ def answerQuery(query: str, vectorstore: str, llmModel: str = "llama3-70b-8192")
|
|
197 |
base_compressor=compressor, base_retriever=retriever
|
198 |
)
|
199 |
baseChain = (
|
200 |
-
{"context": retriever | RunnableLambda(format_docs), "question": RunnablePassthrough(), "chatHistory": RunnablePassthrough()}
|
201 |
| prompt
|
202 |
| ChatGroq(model = llmModel, temperature = 0.75, max_tokens = 512)
|
203 |
| StrOutputParser()
|
@@ -212,7 +213,7 @@ def answerQuery(query: str, vectorstore: str, llmModel: str = "llama3-70b-8192")
|
|
212 |
return {
|
213 |
"output": chain.invoke(
|
214 |
{"question": query},
|
215 |
-
{"configurable": {"session_id":
|
216 |
)
|
217 |
}
|
218 |
|
|
|
180 |
global prompt
|
181 |
global client
|
182 |
global embeddings
|
183 |
+
vectorStoreName = vectorstore
|
184 |
vectorstore = QdrantVectorStore.from_existing_collection(
|
185 |
embedding = embeddings,
|
186 |
collection_name=vectorstore,
|
|
|
198 |
base_compressor=compressor, base_retriever=retriever
|
199 |
)
|
200 |
baseChain = (
|
201 |
+
{"context": RunnableLambda(lambda x: x["question"]) | retriever | RunnableLambda(format_docs), "question": RunnablePassthrough(), "chatHistory": RunnablePassthrough()}
|
202 |
| prompt
|
203 |
| ChatGroq(model = llmModel, temperature = 0.75, max_tokens = 512)
|
204 |
| StrOutputParser()
|
|
|
213 |
return {
|
214 |
"output": chain.invoke(
|
215 |
{"question": query},
|
216 |
+
{"configurable": {"session_id": vectorStoreName}}
|
217 |
)
|
218 |
}
|
219 |
|