Spaces:
Sleeping
Sleeping
import io | |
import tempfile | |
from ipaddress import ip_address | |
from typing import Optional | |
import nltk | |
import jwt | |
import base64 | |
import json | |
from click import option | |
from jwt import ExpiredSignatureError, InvalidTokenError | |
from starlette import status | |
from functions import * | |
import pandas as pd | |
from fastapi import FastAPI, File, UploadFile, HTTPException, Request, Query | |
from pydantic import BaseModel | |
from fastapi.middleware.cors import CORSMiddleware | |
from src.api.speech_api import speech_translator_router | |
from functions import client as supabase | |
from urllib.parse import urlparse | |
from collections import Counter, defaultdict | |
from datetime import datetime, timedelta | |
from dateutil.parser import isoparse | |
app = FastAPI(title="ConversAI", root_path="/api/v1") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
app.include_router(speech_translator_router, prefix="/speech") | |
async def sign_up(email, username, password): | |
res, _ = supabase.auth.sign_up( | |
{"email": email, "password": password, "role": "user"} | |
) | |
user_id = res[1].id | |
r_ = createUser(user_id=user_id, username=username, email=email) | |
if r_.get('code') == 409: | |
return r_ | |
elif r_.get('code') == 200: | |
response = { | |
"status": "success", | |
"code": 200, | |
"message": "Please check you email address for email verification", | |
} | |
else: | |
response = { | |
"status": "failed", | |
"code": 400, | |
"message": "Failed to sign up please try again later", | |
} | |
return response | |
async def check_session(user_id: str): | |
res = supabase.auth.get_session() | |
if res == None: | |
try: | |
supabase.table("Stores").delete().eq( | |
"StoreID", user_id | |
).execute() | |
resp = supabase.auth.sign_out() | |
response = {"message": "success", "code": 200, "Session": res} | |
return response | |
except Exception as e: | |
raise HTTPException(status_code=400, detail=str(e)) | |
return res | |
async def get_user(access_token): | |
res = supabase.auth.get_user(jwt=access_token) | |
return res | |
async def refresh_token(refresh_token): | |
res = supabase.auth.refresh_token(refresh_token) | |
return res | |
async def sign_in(email, password): | |
try: | |
res = supabase.auth.sign_in_with_password( | |
{"email": email, "password": password} | |
) | |
user_id = res.user.id | |
access_token = res.session.access_token | |
refresh_token = res.session.refresh_token | |
store_session_check = supabase.table("Stores").select("*").filter("StoreID", "eq", user_id).execute() | |
store_id = None | |
if store_session_check and store_session_check.data: | |
store_id = store_session_check.data[0].get("StoreID") | |
userData = supabase.table("ConversAI_UserInfo").select("*").filter("user_id", "eq", user_id).execute().data | |
username = userData[0]["username"] | |
if not store_id: | |
response = ( | |
supabase.table("Stores").insert( | |
{ | |
"AccessToken": access_token, | |
"StoreID": user_id, | |
"RefreshToken": refresh_token, | |
"email": email | |
} | |
).execute() | |
) | |
message = { | |
"message": "Success", | |
"code": status.HTTP_200_OK, | |
"username": username, | |
"user_id": user_id, | |
"access_token": access_token, | |
"refresh_token": refresh_token, | |
} | |
return message | |
elif store_id == user_id: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail="You are already signed in. Please sign out first to sign in again." | |
) | |
else: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail="Failed to sign in. Please check your credentials." | |
) | |
except HTTPException as http_exc: | |
raise http_exc | |
except Exception as e: | |
raise HTTPException( | |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, | |
detail=f"An unexpected error occurred during sign-in: {str(e)}" | |
) | |
async def login_with_token(access_token: str, refresh_token: str): | |
try: | |
decoded_token = jwt.decode(access_token, options={"verify_signature": False}) | |
user_id_oauth = decoded_token.get("sub") | |
try: | |
user_id = supabase.table("ConversAI_UserInfo").select("*").filter("user_id", "eq", user_id_oauth).execute() | |
user_id = supabase.table("ConversAI_UserInfo").select("*").filter("email", "eq", user_id_oauth).execute() | |
user_name = user_id.data[0]["username"] | |
except: | |
user_name = '' | |
json = { | |
"code": status.HTTP_200_OK, | |
"user_id": decoded_token.get("sub"), | |
"email": decoded_token.get("email"), | |
"access_token": access_token, | |
"refresh_token": refresh_token, | |
"issued_at": decoded_token.get("iat"), | |
"expires_at": decoded_token.get("exp"), | |
"username": user_name | |
} | |
return json | |
except (ExpiredSignatureError, InvalidTokenError) as e: | |
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail=str(e)) | |
async def user_name_(username: str, user_id: str, email: str): | |
r_ = createUser(user_id=user_id, username=username, email=email) | |
return r_ | |
async def set_session_data(access_token, refresh_token, user_id): | |
res = supabase.auth.set_session(access_token, refresh_token) | |
store_session_check = supabase.table("Stores").select("*").filter("StoreID", "eq", user_id).execute() | |
store_id = None | |
if store_session_check and store_session_check.data: | |
store_id = store_session_check.data[0].get("StoreID") | |
if not store_id: | |
response = ( | |
supabase.table("Stores").insert( | |
{ | |
"AccessToken": access_token, | |
"StoreID": user_id, | |
"RefreshToken": refresh_token, | |
} | |
).execute() | |
) | |
res = { | |
"message": "success", | |
"code": 200, | |
"session_data": res, | |
} | |
return res | |
async def sign_out(user_id): | |
try: | |
supabase.table("Stores").delete().eq( | |
"StoreID", user_id | |
).execute() | |
res = supabase.auth.sign_out() | |
response = {"message": "success"} | |
return response | |
except Exception as e: | |
raise HTTPException(status_code=400, detail=str(e)) | |
async def oauth(): | |
res = supabase.auth.sign_in_with_oauth( | |
{"provider": "google", "options": {"redirect_to": "https://convers-ai-test.vercel.app/home"}}) | |
return res | |
async def newChatbot(chatbotName: str, username: str): | |
currentBotCount = len(listTables(username=username)["output"]) | |
limit = supabase.table("ConversAI_UserConfig").select("chatbotLimit").eq("user_id", username).execute().data[0][ | |
"chatbotLimit"] | |
if currentBotCount >= int(limit): | |
return { | |
"output": "CHATBOT LIMIT EXCEEDED" | |
} | |
supabase.table("ConversAI_ChatbotInfo").insert({"user_id": username, "chatbotname": chatbotName}).execute() | |
chatbotName = f"convai${username}${chatbotName}" | |
return createTable(tablename=chatbotName) | |
async def loadPDF(vectorstore: str, pdf: UploadFile = File(...)): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
source = pdf.filename | |
pdf = await pdf.read() | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file: | |
temp_file.write(pdf) | |
temp_file_path = temp_file.name | |
text = extractTextFromPdf(temp_file_path) | |
os.remove(temp_file_path) | |
dct = { | |
"output": text, | |
"source": source | |
} | |
numTokens = len(" ".join([text[x] for x in text]).translate(str.maketrans('', '', string.punctuation)).split(" ")) | |
dct = json.dumps(dct, indent=1).encode("utf-8") | |
fileName = createDataSourceName(sourceName=source) | |
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json") | |
response = ( | |
supabase.table("ConversAI_ChatbotDataSources") | |
.insert({"username": username, | |
"chatbotName": chatbotName, | |
"dataSourceName": fileName, | |
"numTokens": numTokens, | |
"sourceEndpoint": "/loadPDF", | |
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")}) | |
.execute() | |
) | |
return { | |
"output": "SUCCESS" | |
} | |
async def loadImagePDF(vectorstore: str, pdf: UploadFile = File(...)): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
source = pdf.filename | |
pdf = await pdf.read() | |
text = getTextFromImagePDF(pdfBytes=pdf) | |
dct = { | |
"output": text, | |
"source": source | |
} | |
dct = json.dumps(dct, indent=1).encode("utf-8") | |
fileName = createDataSourceName(sourceName=source) | |
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json") | |
response = ( | |
supabase.table("ConversAI_ChatbotDataSources") | |
.insert({"username": username, | |
"chatbotName": chatbotName, | |
"dataSourceName": fileName, | |
"sourceEndpoint": "/loadImagePDF", | |
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")}) | |
.execute() | |
) | |
return { | |
"output": "SUCCESS" | |
} | |
class AddText(BaseModel): | |
vectorstore: str | |
text: str | |
async def loadText(addTextConfig: AddText): | |
vectorstore, text = addTextConfig.vectorstore, addTextConfig.text | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
dct = { | |
"output": cleanText(text = text), | |
"source": "Text" | |
} | |
dct = json.dumps(dct, indent=1).encode("utf-8") | |
fileName = createDataSourceName(sourceName="Text") | |
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json") | |
response = ( | |
supabase.table("ConversAI_ChatbotDataSources") | |
.insert({"username": username, | |
"chatbotName": chatbotName, | |
"dataSourceName": fileName, | |
"sourceEndpoint": "/loadText", | |
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")}) | |
.execute() | |
) | |
return { | |
"output": "SUCCESS" | |
} | |
class AddQAPair(BaseModel): | |
vectorstore: str | |
question: str | |
answer: str | |
async def addQAPairData(addQaPair: AddQAPair): | |
username, chatbotname = addQaPair.vectorstore.split("$")[1], addQaPair.vectorstore.split("$")[2] | |
df = pd.DataFrame(supabase.table("ConversAI_ChatbotInfo").select("*").execute().data) | |
currentCount = df[(df["user_id"] == username) & (df["chatbotname"] == chatbotname)]["charactercount"].iloc[0] | |
qa = f"QUESTION: {addQaPair.question}\tANSWER: {addQaPair.answer}" | |
newCount = currentCount + len(qa) | |
limit = supabase.table("ConversAI_UserConfig").select("tokenLimit").eq("user_id", username).execute().data[0][ | |
"tokenLimit"] | |
if newCount < int(limit): | |
supabase.table("ConversAI_ChatbotInfo").update({"charactercount": str(newCount)}).eq("user_id", username).eq( | |
"chatbotname", chatbotname).execute() | |
return addDocuments(text=qa, source="Q&A Pairs", vectorstore=addQaPair.vectorstore) | |
else: | |
return { | |
"output": "WEBSITE EXCEEDING LIMITS, PLEASE TRY WITH A SMALLER DOCUMENT." | |
} | |
class LoadWebsite(BaseModel): | |
vectorstore: str | |
urls: list[str] | |
source: str | |
async def loadWebURLs(loadWebsite: LoadWebsite): | |
vectorstore, urls, source = loadWebsite.vectorstore, loadWebsite.urls, loadWebsite.source | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
text = extractTextFromUrlList(urls=urls) | |
dct = { | |
"output": text, | |
"source": source | |
} | |
dct = json.dumps(dct, indent=1).encode("utf-8") | |
fileName = createDataSourceName(sourceName=source) | |
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json") | |
response = ( | |
supabase.table("ConversAI_ChatbotDataSources") | |
.insert({"username": username, | |
"chatbotName": chatbotName, | |
"dataSourceName": fileName, | |
"sourceEndpoint": "/loadWebURLs", | |
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")}) | |
.execute() | |
) | |
return { | |
"output": "SUCCESS" | |
} | |
async def answerQuestion(request: Request, query: str, vectorstore: str, llmModel: str = "llama3-70b-8192"): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
output = answerQuery(query=query, vectorstore=vectorstore, llmModel=llmModel) | |
ip_address = request.client.host | |
response_token_count = len(output["output"]) | |
city = get_ip_info(ip_address) | |
response = ( | |
supabase.table("ConversAI_ChatHistory") | |
.insert({"username": username, "chatbotName": chatbotName, "llmModel": llmModel, "question": query, | |
"response": output["output"], "IpAddress": ip_address, "ResponseTokenCount": response_token_count, | |
"vectorstore": vectorstore, "City": city}) | |
.execute() | |
) | |
return output | |
async def deleteChatbot(vectorstore: str): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
supabase.table('ConversAI_ChatbotInfo').delete().eq('user_id', username).eq('chatbotname', chatbotName).execute() | |
return deleteTable(tableName=vectorstore) | |
async def listChatbots(username: str): | |
return listTables(username=username) | |
async def crawlUrl(baseUrl: str): | |
return { | |
"urls": getLinks(url=baseUrl, timeout=30), | |
"source": urlparse(baseUrl).netloc | |
} | |
async def getCount(vectorstore: str): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
df = pd.DataFrame(supabase.table("ConversAI_ChatbotInfo").select("*").execute().data) | |
return { | |
"currentCount": df[(df['user_id'] == username) & (df['chatbotname'] == chatbotName)]['charactercount'].iloc[0] | |
} | |
class YtTranscript(BaseModel): | |
vectorstore: str | |
urls: list[str] | |
async def loadYoutubeTranscript(ytTranscript: YtTranscript): | |
vectorstore, urls = ytTranscript.vectorstore, ytTranscript.urls | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
text = getTranscript(urls=urls) | |
dct = { | |
"output": text, | |
"source": "www.youtube.com" | |
} | |
dct = json.dumps(dct, indent=1).encode("utf-8") | |
fileName = createDataSourceName(sourceName="youtube") | |
response = supabase.storage.from_("ConversAI").upload(file=dct, path=f"{fileName}_data.json") | |
response = ( | |
supabase.table("ConversAI_ChatbotDataSources") | |
.insert({"username": username, | |
"chatbotName": chatbotName, | |
"dataSourceName": fileName, | |
"sourceEndpoint": "/getYoutubeTranscript", | |
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")}) | |
.execute() | |
) | |
return { | |
"output": "SUCCESS" | |
} | |
async def analyzeAndAnswer(query: str, file: UploadFile = File(...)): | |
extension = file.filename.split(".")[-1] | |
try: | |
if extension in ["xls", "xlsx", "xlsm", "xlsb"]: | |
df = pd.read_excel(io.BytesIO(await file.read())) | |
response = analyzeData(query=query, dataframe=df) | |
elif extension == "csv": | |
df = pd.read_csv(io.BytesIO(await file.read())) | |
response = analyzeData(query=query, dataframe=df) | |
else: | |
response = "INVALID FILE TYPE" | |
return { | |
"output": response | |
} | |
except: | |
return { | |
"output": "UNABLE TO ANSWER QUERY" | |
} | |
async def chatHistory(vectorstore: str): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
response = supabase.table("ConversAI_ChatHistory").select("timestamp", "question", "response").eq("username", | |
username).eq( | |
"chatbotName", chatbotName).execute().data | |
return response | |
async def listChatbotSources(vectorstore: str): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
result = supabase.table("ConversAI_ChatbotDataSources").select("*").eq("username", username).eq("chatbotName", | |
chatbotName).execute().data | |
return result | |
async def deleteChatbotSource(dataSourceName: str): | |
response = supabase.table("ConversAI_ChatbotDataSources").delete().eq("dataSourceName", dataSourceName).execute() | |
response = supabase.storage.from_('ConversAI_ChatbotDataSources').remove(f"{dataSourceName}_data.json") | |
return { | |
"output": "SUCCESS" | |
} | |
class LoadEditedJson(BaseModel): | |
vectorstore: str | |
dataSourceName: str | |
sourceEndpoint: str | |
jsonData: dict[str, str] | |
async def loadEditedJson(loadEditedJsonConfig: LoadEditedJson): | |
username, chatbotName = loadEditedJsonConfig.vectorstore.split("$")[1], loadEditedJsonConfig.vectorstore.split("$")[2] | |
jsonData = json.dumps(loadEditedJsonConfig.jsonData, indent = 1).encode("utf-8") | |
fileName = createDataSourceName(loadEditedJsonConfig.dataSourceName) | |
response = supabase.storage.from_("ConversAI").upload(file=jsonData, path=f"{fileName}_data.json") | |
response = ( | |
supabase.table("ConversAI_ChatbotDataSources") | |
.insert({"username": username, | |
"chatbotName": chatbotName, | |
"dataSourceName": fileName, | |
"sourceEndpoint": loadEditedJsonConfig.sourceEndpoint, | |
"sourceContentURL": os.path.join(os.environ["SUPABASE_PUBLIC_BASE_URL"], f"{fileName}_data.json")}) | |
.execute() | |
) | |
return { | |
"output": "SUCCESS" | |
} | |
async def publicOrPrivate(vectorstore: str, mode: str = "public"): | |
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2] | |
response = ( | |
supabase.table("ConversAI_ChatbotInfo") | |
.update({"public/private": mode}) | |
.eq("user_id", username) | |
.eq("chatbotname", chatbotName) | |
.execute() | |
) | |
return { | |
"output": "SUCCESS" | |
} | |
class TrainChatbot(BaseModel): | |
vectorstore: str | |
urls: list[str] | |
async def trainChatbot(trainChatbotConfig: TrainChatbot): | |
vectorstore, UrlSources = trainChatbotConfig.vectorstore, trainChatbotConfig.urls | |
texts = [] | |
sources = [] | |
fileTypes = [supabase.table("ConversAI_ChatbotDataSources").select("sourceEndpoint").eq("sourceContentURL", | |
x).execute().data[0][ | |
"sourceEndpoint"] for x in UrlSources] | |
for source, fileType in zip(UrlSources, fileTypes): | |
if ((fileType == "/loadPDF") | (fileType == "/loadImagePDF")): | |
r = requests.get(source) | |
file = eval(r.content.decode("utf-8")) | |
content = file["output"] | |
fileSource = file["source"] | |
texts.append(".".join( | |
[base64.b64decode(content[key].encode("utf-8")).decode("utf-8") for key in content.keys()]).replace( | |
"\n", " ")) | |
sources.append(fileSource) | |
elif fileType == "/loadText": | |
r = requests.get(source) | |
file = eval(r.content.decode("utf-8")) | |
content = file["output"] | |
fileSource = file["source"] | |
texts.append(content.replace("\n", " ")) | |
sources.append(fileSource) | |
elif ((fileType == "/loadWebURLs") | (fileType == "/loadYoutubeTranscript")): | |
r = requests.get(source) | |
file = eval(r.content.decode("utf-8")) | |
content = file["output"] | |
fileSource = file["source"] | |
texts.append(".".join( | |
[base64.b64decode(content[key].encode("utf-8")).decode("utf-8") for key in content.keys()]).replace( | |
"\n", " ")) | |
sources.append(fileSource) | |
else: | |
pass | |
texts = [(text, source) for text, source in zip(texts, sources)] | |
return addDocuments(texts=texts, vectorstore=vectorstore) | |
def get_ip_info(ip: str): | |
try: | |
response = requests.get(f"https://ipinfo.io/{ip}/json") | |
data = response.json() | |
return data.get("city", "Unknown") | |
except Exception as e: | |
return "Unknown" | |
async def daily_chat_count( | |
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"), | |
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)") | |
): | |
if not start_date or not end_date: | |
end_date = datetime.now().astimezone().date() | |
start_date = end_date - timedelta(days=7) | |
else: | |
start_date = isoparse(start_date).date() | |
end_date = isoparse(end_date).date() | |
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data | |
dates = [ | |
isoparse(i["timestamp"]).date() | |
for i in response | |
if start_date <= isoparse(i["timestamp"]).date() <= end_date | |
] | |
date_count = Counter(dates) | |
data = [{"date": date.isoformat(), "count": count} for date, count in date_count.items()] | |
return {"data": data} | |
async def daily_active_end_user( | |
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"), | |
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)") | |
): | |
if not start_date or not end_date: | |
end_date = datetime.now().astimezone().date() | |
start_date = end_date - timedelta(days=7) | |
else: | |
start_date = isoparse(start_date).date() | |
end_date = isoparse(end_date).date() | |
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data | |
ip_by_date = defaultdict(set) | |
for i in response: | |
timestamp = isoparse(i["timestamp"]) | |
ip_address = i["IpAddress"] | |
if start_date <= timestamp.date() <= end_date: | |
date = timestamp.date() | |
ip_by_date[date].add(ip_address) | |
data = [{"date": date.isoformat(), "terminal": len(ips)} for date, ips in ip_by_date.items() if len(ips) > 1] | |
return {"data": data} | |
async def average_session_interaction( | |
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"), | |
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)") | |
): | |
if not start_date or not end_date: | |
end_date = datetime.now().astimezone().date() | |
start_date = end_date - timedelta(days=7) | |
else: | |
start_date = isoparse(start_date).date() | |
end_date = isoparse(end_date).date() | |
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data | |
total_messages_by_date = defaultdict(int) | |
unique_ips_by_date = defaultdict(set) | |
for i in response: | |
timestamp = isoparse(i["timestamp"]) | |
ip_address = i["IpAddress"] | |
if start_date <= timestamp.date() <= end_date: | |
date = timestamp.date() | |
total_messages_by_date[date] += 1 | |
unique_ips_by_date[date].add(ip_address) | |
data = [] | |
for date in sorted(total_messages_by_date.keys()): | |
total_messages = total_messages_by_date[date] | |
unique_ips = len(unique_ips_by_date[date]) | |
average_interactions = total_messages / unique_ips if unique_ips > 0 else 0 | |
data.append({"date": date.isoformat(), "interactions": average_interactions}) | |
return {"data": data} | |
async def token_usages( | |
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"), | |
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)") | |
): | |
if not start_date or not end_date: | |
end_date = datetime.now().astimezone().date() | |
start_date = end_date - timedelta(days=7) | |
else: | |
start_date = isoparse(start_date).date() | |
end_date = isoparse(end_date).date() | |
response = supabase.table("ConversAI_ChatHistory").select("*").execute().data | |
token_usage_by_date = defaultdict(int) | |
for i in response: | |
timestamp = isoparse(i["timestamp"]) | |
if start_date <= timestamp.date() <= end_date: | |
date = timestamp.date() | |
response_token_count = i.get("ResponseTokenCount") | |
if response_token_count is not None: | |
token_usage_by_date[date] += response_token_count | |
data = [{"date": date.isoformat(), "total_tokens": total_tokens} for date, total_tokens in | |
token_usage_by_date.items()] | |
return {"data": data} | |
async def add_feedback(request: Request, feedback: str, user_id: str): | |
client_ip = request.client.host | |
city = get_ip_info(client_ip) | |
response = supabase.table("ConversAI_Feedback").insert( | |
{"feedback": feedback, "user_id": user_id, "city": city, "ip": client_ip}).execute() | |
return {"message": "success"} | |
async def user_satisfaction_rate( | |
start_date: Optional[str] = Query(None, description="Start date in ISO format (YYYY-MM-DD)"), | |
end_date: Optional[str] = Query(None, description="End date in ISO format (YYYY-MM-DD)") | |
): | |
if not start_date or not end_date: | |
end_date = datetime.now().astimezone().date() | |
start_date = end_date - timedelta(days=7) | |
else: | |
start_date = isoparse(start_date).date() | |
end_date = isoparse(end_date).date() | |
response = supabase.table("ConversAI_Feedback").select("*").execute().data | |
feedback_counts = defaultdict(lambda: {"like": 0, "dislike": 0}) | |
for i in response: | |
timestamp = isoparse(i["timestamp"]) | |
if start_date <= timestamp.date() <= end_date: | |
date = timestamp.date() | |
feedback = i.get("feedback") | |
if feedback == "like": | |
feedback_counts[date]["like"] += 1 | |
elif feedback == "dislike": | |
feedback_counts[date]["dislike"] += 1 | |
data = [] | |
for date in sorted(feedback_counts.keys()): | |
like_count = feedback_counts[date]["like"] | |
dislike_count = feedback_counts[date]["dislike"] | |
total_feedback = like_count + dislike_count | |
satisfaction_rate = (like_count / total_feedback * 100) if total_feedback > 0 else 0 | |
data.append({"date": date.isoformat(), "rate": satisfaction_rate}) | |
return {"data": data} |