teamnassim commited on
Commit
1f5c0f1
Β·
1 Parent(s): 1002e61

push first instance

Browse files
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+ from model import create_effnetb0_model
6
+ from timeit import default_timer as timer
7
+ from typing import Tuple, Dict
8
+ from torchvision import transforms
9
+
10
+ # Setup class names
11
+ class_names = ["Happy", "Sad", "Disgusted","Suprised","Fearful","Angry","Neutral"]
12
+
13
+ ### 2. Model and transforms preparation ###
14
+
15
+ # Create EffNetB2 model
16
+ effnetb0, effnetb0_transforms = create_effnetb0_model(
17
+ num_classes=7, # len(class_names) would also work
18
+ )
19
+
20
+ # Load saved weights
21
+ effnetb0.load_state_dict(
22
+ torch.load(
23
+ f="models/efficientnet_b0.pth",
24
+ map_location=torch.device("cpu"), # load to CPU
25
+ )
26
+ )
27
+
28
+ ### 3. Predict function ###
29
+
30
+ # Create predict function
31
+
32
+ def predict(inp):
33
+ inp = transforms.ToTensor()(inp).unsqueeze(0)
34
+ with torch.no_grad():
35
+ prediction = torch.nn.functional.softmax(effnetb0(inp)[0], dim=0)
36
+ confidences = {class_names[i]: float(prediction[i]) for i in range(len(class_names))}
37
+ return confidences
38
+
39
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
40
+
41
+ ### 4. Gradio app ###
42
+
43
+ # Create title, description and article strings
44
+ title = "Emotion Detection App πŸ˜€πŸ˜πŸ˜°πŸ˜žπŸ€’πŸ˜²πŸ˜‘"
45
+ description = "An EfficientNetB0 computer vision model to classify images of emotions: Happy, Neutral, Sad, fearful, Angry, Suprised, Disgusted."
46
+ article = "Reference: [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
47
+
48
+ import gradio as gr
49
+
50
+ gr.Interface(fn=predict,
51
+ inputs=gr.Image(type="pil"),
52
+ outputs=gr.Label(num_top_classes=7),
53
+ examples=example_list,
54
+ title=title,
55
+ description=description,
56
+ article=article).launch()
examples/im175.png ADDED
examples/im867.png ADDED
examples/im90.png ADDED
model.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+ import torchvision.transforms
6
+
7
+ def create_effnetb0_model(num_classes:int=7,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB0 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB0 image transforms.
19
+ """
20
+ # Create EffNetB0 pretrained weights, transforms and model
21
+ weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT
22
+ transforms = weights.transforms()
23
+ model = torchvision.models.efficientnet_b0(weights=weights)
24
+
25
+ # Freeze all layers in base model
26
+ for param in model.parameters():
27
+ param.requires_grad = False
28
+
29
+ # Change classifier head with random seed for reproducibility
30
+ torch.manual_seed(seed)
31
+ model.classifier = nn.Sequential(
32
+ nn.Dropout(p=0.3, inplace=True),
33
+ nn.Linear(in_features=1280, out_features=num_classes),
34
+ )
35
+
36
+ return model, transforms
models/efficientnet_b0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1892c1219503678b193e8f0f0f8d2beff96bd995c749418ccb9a7f8e76dee102
3
+ size 16361111
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ <<<<<<< HEAD
2
+ torch==1.13.0
3
+ torchvision==0.14.0
4
+ gradio==3.1.4
5
+ =======
6
+ version https://git-lfs.github.com/spec/v1
7
+ oid sha256:9ebc76c7c29ea13254e28d4372eaa9191f593f4bca0c04cbb56416b3c5dfadd7
8
+ size 48
9
+ >>>>>>> 5d0db446 (added app and model)