Spaces:
Runtime error
Runtime error
import torch | |
import re | |
import gradio as gr | |
from transformers import GPT2Tokenizer, AutoFeatureExtractor, VisionEncoderDecoderModel | |
encoder_checkpoint = 'google/vit-base-patch16-224' | |
decoder_checkpoint = 'surajp/gpt2-hindi' | |
model_checkpoint = 'team-indain-image-caption/hindi-image-captioning' | |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
def predict(image,max_length=64, num_beams=4): | |
image = image.convert('RGB') | |
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
caption_ids = model.generate(sample, max_length = max_length)[0] | |
print("*"*20) | |
print(caption_ids) | |
caption_text = clean_text(tokenizer.decode(caption_ids)) | |
return caption_text | |
input = gr.inputs.Image(label="Image to search", type = 'pil', optional=False) | |
output = gr.outputs.Textbox(type="auto",label="Captions") | |
article = "This HuggingFace Space presents a demo for Image captioning in Hindi built with VIT Encoder and GPT2 Decoder" | |
interface = gr.Interface( | |
fn=predict, | |
inputs = input, | |
theme="grass", | |
outputs=output, | |
# examples = examples, | |
title=title, | |
description=article, | |
) | |
interface.launch(debug=True) |