|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers import TapexTokenizer, BartForConditionalGeneration |
|
import pandas as pd |
|
import gradio as gr |
|
|
|
import numpy as np |
|
import time |
|
import os |
|
import random |
|
|
|
|
|
|
|
''' |
|
import pkg_resources |
|
|
|
# Get a list of installed packages and their versions |
|
installed_packages = {pkg.key: pkg.version for pkg in pkg_resources.working_set} |
|
|
|
# Print the list of packages |
|
for package, version in installed_packages.items(): |
|
print(f"{package}=={version}") |
|
''' |
|
|
|
''' |
|
# Replace the connection parameters with your SQL Server information |
|
server = 'your_server' |
|
database = 'your_database' |
|
username = 'your_username' |
|
password = 'your_password' |
|
driver = 'SQL Server' # This depends on the ODBC driver installed on your system |
|
|
|
# Create the connection string |
|
connection_string = f'DRIVER={{{driver}}};SERVER={server};DATABASE={database};UID={username};PWD={password}' |
|
|
|
# Connect to the SQL Server |
|
conn = pyodbc.connect(connection_string) |
|
|
|
#============================================================================ |
|
# Replace "your_query" with your SQL query to fetch data from the database |
|
query = 'SELECT * FROM your_table_name' |
|
|
|
# Use pandas to read data from the SQL Server and store it in a DataFrame |
|
df = pd.read_sql_query(query, conn) |
|
|
|
# Close the SQL connection |
|
conn.close() |
|
''' |
|
|
|
''' |
|
# Create a sample DataFrame with 3,000 records and 20 columns |
|
num_records = 100 |
|
num_columns = 20 |
|
|
|
data = { |
|
f"column_{i}": np.random.randint(0, 100, num_records) for i in range(num_columns) |
|
} |
|
|
|
# Randomize the year and city columns |
|
years = list(range(2000, 2023)) # Range of years |
|
cities = ["New York", "Los Angeles", "Chicago", "Houston", "Miami"] # List of cities |
|
|
|
data["year"] = [random.choice(years) for _ in range(num_records)] |
|
data["city"] = [random.choice(cities) for _ in range(num_records)] |
|
|
|
table = pd.DataFrame(data) |
|
''' |
|
|
|
data = { |
|
"year": [1896, 1900, 1904, 2004, 2008, 2012], |
|
"city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] |
|
} |
|
table = pd.DataFrame.from_dict(data) |
|
|
|
|
|
|
|
chatbot_model_name = "microsoft/DialoGPT-medium" |
|
tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name) |
|
model = AutoModelForCausalLM.from_pretrained(chatbot_model_name) |
|
|
|
|
|
|
|
|
|
|
|
sql_model_name = "microsoft/tapex-large-finetuned-wtq" |
|
sql_tokenizer = TapexTokenizer.from_pretrained(sql_model_name) |
|
sql_model = BartForConditionalGeneration.from_pretrained(sql_model_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
conversation_history = [] |
|
|
|
def chat(input, history=[]): |
|
|
|
|
|
|
|
|
|
|
|
''' |
|
if is_question: |
|
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") |
|
sql_outputs = sql_model.generate(**sql_encoding) |
|
sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) |
|
|
|
else: |
|
''' |
|
|
|
|
|
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') |
|
|
|
|
|
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) |
|
|
|
|
|
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() |
|
|
|
|
|
response = tokenizer.decode(history[0]).split("<|endoftext|>") |
|
response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] |
|
|
|
return response, history |
|
|
|
|
|
def sqlquery(input): |
|
|
|
global conversation_history |
|
|
|
|
|
sql_encoding = sql_tokenizer(table=table, query=input + sql_tokenizer.eos_token, return_tensors="pt") |
|
sql_outputs = sql_model.generate(**sql_encoding) |
|
sql_response = sql_tokenizer.batch_decode(sql_outputs, skip_special_tokens=True) |
|
|
|
|
|
conversation_history.append(("User", input)) |
|
conversation_history.append(("Bot", sql_response)) |
|
|
|
|
|
|
|
conversation = "\n".join([f"{sender}: {msg}" for sender, msg in conversation_history]) |
|
|
|
return conversation |
|
|
|
|
|
|
|
''' |
|
html = "<div class='chatbot'>" |
|
for user_msg, resp_msg in conversation_history: |
|
html += f"<div class='user_msg'>{user_msg}</div>" |
|
html += f"<div class='resp_msg'>{resp_msg}</div>" |
|
html += "</div>" |
|
return html |
|
''' |
|
|
|
chat_interface = gr.Interface( |
|
fn=chat, |
|
theme="default", |
|
css=".footer {display:none !important}", |
|
inputs=["text", "state"], |
|
outputs=["chatbot", "state"], |
|
title="ST Chatbot", |
|
description="Type your message in the box above, and the chatbot will respond.", |
|
) |
|
|
|
|
|
sql_interface = gr.Interface( |
|
fn=sqlquery, |
|
theme="default", |
|
css=".footer {display:none !important}", |
|
inputs=gr.Textbox(prompt="You:"), |
|
outputs=gr.Textbox(), |
|
|
|
|
|
|
|
|
|
title="ST SQL Chat", |
|
description="Type your message in the box above, and the chatbot will respond.", |
|
) |
|
|
|
''' |
|
iface = gr.Interface(sqlquery, "text", "html", css=""" |
|
.chatbox {display:flex;flex-direction:column} |
|
.user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} |
|
.user_msg {background-color:cornflowerblue;color:white;align-self:start} |
|
.resp_msg {background-color:lightgray;align-self:self-end} |
|
""", allow_screenshot=False, allow_flagging=False) |
|
''' |
|
|
|
combine_interface = gr.TabbedInterface( |
|
interface_list=[ |
|
sql_interface, |
|
chat_interface |
|
], |
|
tab_names=['SQL Chat' ,'Chatbot'], |
|
) |
|
|
|
if __name__ == '__main__': |
|
combine_interface.launch() |
|
|
|
|
|
|
|
''' |
|
batch_size = 10 # Number of records in each batch |
|
num_records = 3000 # Total number of records in the dataset |
|
|
|
for start_idx in range(0, num_records, batch_size): |
|
end_idx = min(start_idx + batch_size, num_records) |
|
|
|
# Get a batch of records |
|
batch_data = dataset[start_idx:end_idx] # Replace with your dataset |
|
|
|
# Tokenize the batch |
|
tokenized_batch = tokenizer.batch_encode_plus( |
|
batch_data, padding=True, truncation=True, return_tensors="pt" |
|
) |
|
|
|
# Perform inference |
|
with torch.no_grad(): |
|
output = model.generate( |
|
input_ids=tokenized_batch["input_ids"], |
|
max_length=1024, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
# Decode the output and process the responses |
|
responses = [tokenizer.decode(ids, skip_special_tokens=True) for ids in output] |
|
|
|
# Process responses and maintain conversation context |
|
# ... |
|
|
|
|
|
''' |