Spaces:
Runtime error
Runtime error
from peft import ( | |
prepare_model_for_int8_training, | |
LoraConfig, | |
PeftModel, | |
get_peft_model, | |
get_peft_model_state_dict, | |
set_peft_model_state_dict, | |
) | |
from transformers import LlamaForCausalLM, LlamaTokenizer, TrainerCallback, GenerationConfig | |
import os | |
import sys | |
import torch | |
import torch.nn as nn | |
import bitsandbytes as bnb | |
from datasets import load_dataset, Dataset | |
import transformers | |
from huggingface_hub import snapshot_download | |
import argparse | |
import warnings | |
from tqdm import tqdm | |
from functools import partial | |
import utils | |
import prompt | |
assert ( | |
"LlamaTokenizer" in transformers._import_structure["models.llama"] | |
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" | |
# 0. prepare args and logger | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--wandb", action="store_true", default=False) | |
parser.add_argument("--prompt_type", type=str, default="chat") | |
parser.add_argument("--data_path", type=str, default="merge.json") | |
parser.add_argument("--output_path", type=str, default="lora-Vicuna") | |
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf") | |
parser.add_argument("--num_epoch", type=int, default=6) | |
parser.add_argument("--micro_batch", type=int, default=4) | |
parser.add_argument("--total_batch", type=int, default=128) | |
parser.add_argument("--log_steps", type=int, default=100) | |
parser.add_argument("--eval_steps", type=int, default=200) | |
parser.add_argument("--save_steps", type=int, default=200) | |
parser.add_argument("--warmup_ratio", type=float, default=0.05) | |
parser.add_argument("--test_size", type=int, default=200) | |
parser.add_argument("--resume_from_checkpoint", type=str, default=None) | |
parser.add_argument("--lora_remote_checkpoint", type=str, default=None) | |
parser.add_argument("--ignore_data_skip", type=bool, default=False) | |
args = parser.parse_args() | |
if not args.wandb: | |
os.environ["WANDB_MODE"] = "disable" | |
MICRO_BATCH_SIZE = args.micro_batch # this could actually be 5 but i like powers of 2 | |
BATCH_SIZE = args.total_batch | |
MAX_STEPS = None | |
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE | |
EPOCHS = args.num_epoch | |
LEARNING_RATE = 3e-4 # the Karpathy constant | |
CUTOFF_LEN = 2048 | |
LORA_R = 8 | |
LORA_ALPHA = 16 | |
LORA_DROPOUT = 0.05 | |
USE_8bit = True | |
VAL_SET_SIZE = args.test_size # 2000 | |
TARGET_MODULES = [ | |
"q_proj", | |
"v_proj", | |
"k_proj", | |
"o_proj", | |
"down_proj", | |
"gate_proj", | |
"up_proj", | |
] | |
DATA_PATH = args.data_path | |
OUTPUT_DIR = args.output_path # "lora-Vicuna" | |
device_map = "auto" | |
world_size = int(os.environ.get("WORLD_SIZE", 1)) | |
print(world_size) | |
ddp = world_size != 1 | |
if ddp: | |
print('222') | |
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} | |
print(GRADIENT_ACCUMULATION_STEPS) | |
print(world_size) | |
# GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size | |
print(1111) | |
# we must make sure batch_size and gradient_accumulation_steps not changed for resuming training. | |
if args.resume_from_checkpoint: | |
old_args_path = os.path.join(args.resume_from_checkpoint, 'training_args.bin') | |
if os.path.exists(old_args_path): | |
old_args = torch.load(old_args_path) | |
print(MICRO_BATCH_SIZE) | |
print(old_args.per_device_train_batch_size) | |
print(GRADIENT_ACCUMULATION_STEPS) | |
print(old_args.gradient_accumulation_steps) | |
if MICRO_BATCH_SIZE != old_args.per_device_train_batch_size: | |
raise Exception( | |
f'current micro batch size {MICRO_BATCH_SIZE} is not equal to the old {old_args.per_device_train_batch_size},' | |
' This will cause the trainer skips wrong epochs or steps.' | |
f'please change your micro batch size to {old_args.per_device_train_batch_size}' | |
' or cancel resuming your training' | |
) | |
if GRADIENT_ACCUMULATION_STEPS != old_args.gradient_accumulation_steps: | |
raise Exception( | |
f'current total batch {BATCH_SIZE} is not equal to the old {old_args.gradient_accumulation_steps*old_args.per_device_train_batch_size},' | |
' This will cause the trainer skips wrong epochs or steps.' | |
f'please change your total batch size to {old_args.gradient_accumulation_steps*old_args.per_device_train_batch_size}' | |
' or cancel resuming your training' | |
) | |
else: | |
raise Exception(f'{old_args_path} is not exist!') | |
# checkpoint = os.path.join(args.resume_from_checkpoint, 'pytorch_model.bin') | |
logger = utils.set_file_logger(__name__,OUTPUT_DIR) | |
# 1. load dataset | |
logger.info(f'>>> processing data from {DATA_PATH}') | |
logger.info(f'>>> using {args}') | |
train_tokenizer = LlamaTokenizer.from_pretrained(args.model_path, add_eos_token=True) | |
# assert train_tokenizer.eos_token_id == 2, "Tokenizer eos is wrong!!!" | |
# unk. we want this to be different from the eos token | |
train_tokenizer.pad_token_id = 0 | |
# cannot use eos in generation! | |
# tokenizer.padding_side = "left" # Allow batched inference | |
test_tokenizer = LlamaTokenizer.from_pretrained(args.model_path) | |
if args.prompt_type == 'instruct': | |
PROMPT = prompt.instruct_prompt(train_tokenizer, CUTOFF_LEN) | |
elif args.prompt_type == 'chat': | |
PROMPT = prompt.chat_prompt(train_tokenizer,CUTOFF_LEN) | |
else: | |
raise Exception('not support') | |
# check tokenizer | |
data = load_dataset('json', data_files=DATA_PATH) | |
import random;start = random.randint(1, 100) | |
examples = Dataset.from_dict(data['train'][start:start+5]).map(PROMPT.preprocess_train) | |
for example in examples: | |
logger.info(f'>>> using prompt {args.prompt_type}, prompt example:\n { train_tokenizer.decode(example["input_ids"]) }') | |
logger.info(f'>>> tokenizer labels: { train_tokenizer.decode([ 0 if l==-100 else l for l in example["labels"]])}') | |
logger.info(f'>>> tokenizer example: { example["input_ids"][:10] }...{ example["input_ids"][-10:]}') | |
# 2. load model and checkpoints | |
logger.info(f'>>> load model from {args.model_path}') | |
# if USE_8bit is True: | |
# assert bnb.__version__ >= '0.37.2', "Please downgrade bitsandbytes's version, for example: pip install bitsandbytes==0.37.2" | |
model = LlamaForCausalLM.from_pretrained( | |
args.model_path, | |
load_in_8bit=USE_8bit, | |
device_map=device_map, | |
torch_dtype=torch.float16, | |
) | |
if USE_8bit is True: | |
model = prepare_model_for_int8_training(model) | |
config = LoraConfig( | |
r=LORA_R, | |
lora_alpha=LORA_ALPHA, | |
target_modules=TARGET_MODULES, | |
lora_dropout=LORA_DROPOUT, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
model = get_peft_model(model, config) | |
if args.resume_from_checkpoint: | |
checkpoint_name = os.path.join(args.resume_from_checkpoint, "pytorch_model.bin") | |
# adapter_model.bin | |
if not os.path.exists(checkpoint_name): | |
pytorch_bin_path = checkpoint_name | |
checkpoint_name = os.path.join(args.resume_from_checkpoint, "adapter_model.bin") | |
if os.path.exists(checkpoint_name): | |
os.rename(checkpoint_name, pytorch_bin_path) | |
logger.warning("The file name of the lora checkpoint'adapter_model.bin' is replaced with 'pytorch_model.bin'") | |
else: | |
args.resume_from_checkpoint = None # So the trainer won't try loading its state | |
print(checkpoint_name) | |
# pytorch_model.bin | |
if os.path.exists(checkpoint_name): | |
logger.info(f'>>> load lora from {checkpoint_name}') | |
adapters_weights = torch.load(checkpoint_name) | |
set_peft_model_state_dict(model, adapters_weights) | |
else: | |
raise Exception(f"Checkpoint {checkpoint_name} not found with resume_from_checkpoint=True!") | |
trainable_params = 0 | |
all_param = 0 | |
for _, param in model.named_parameters(): | |
num_params = param.numel() | |
# if using DS Zero 3 and the weights are initialized empty | |
if num_params == 0 and hasattr(param, "ds_numel"): | |
num_params = param.ds_numel | |
all_param += num_params | |
if param.requires_grad: | |
trainable_params += num_params | |
logger.info(f">>> trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}") | |
# 3. speedup dataset processing by multi-process | |
# num_proc = (os.cpu_count()) | |
if VAL_SET_SIZE > 0: | |
train_val = data["train"].train_test_split(test_size=VAL_SET_SIZE, shuffle=True, seed=42) | |
train_data = train_val["train"].shuffle().map(PROMPT.preprocess_train) | |
val_data = train_val["test"].shuffle().map(PROMPT.preprocess_train) | |
else: | |
train_data = data["train"].shuffle().map(PROMPT.preprocess_train) | |
val_data = None | |
now_max_steps = max((len(data["train"]) - VAL_SET_SIZE) // BATCH_SIZE * EPOCHS, EPOCHS) | |
if args.resume_from_checkpoint: | |
# the trainer will ignore the state max_steps and caculate max_steps based on epochs, | |
# so we mannally set the args.max_step to override it. | |
if args.lora_remote_checkpoint is not None: | |
snapshot_download(repo_id=args.lora_remote_checkpoint, allow_patterns=["*.pt", "*.bin", "*.json"], local_dir=args.resume_from_checkpoint) | |
train_state_path = os.path.join(args.resume_from_checkpoint, "trainer_state.json") | |
if os.path.exists(train_state_path): | |
import json | |
base_train_args = json.load(open(train_state_path, 'r')) | |
base_max_steps = base_train_args["max_steps"] | |
resume_scale = base_max_steps / now_max_steps | |
if base_max_steps > now_max_steps: | |
logger.warning(f"epoch {EPOCHS}:{MAX_STEPS} replace to the base_max_steps {base_max_steps}") | |
EPOCHS = None | |
MAX_STEPS = base_max_steps | |
else: | |
MAX_STEPS = now_max_steps | |
assert MAX_STEPS is not None | |
else: | |
MAX_STEPS = now_max_steps | |
# 4. start training | |
class CustomCallback(TrainerCallback): | |
def __init__(self, trainer) -> None: | |
super().__init__() | |
self.trainer = trainer | |
self.generation_config = GenerationConfig( | |
temperature=1.0, | |
top_p=0.75, | |
top_k=40, | |
num_beams=2, | |
bos_token_id=train_tokenizer.bos_token_id, | |
eos_token_id=train_tokenizer.eos_token_id, | |
pad_token_id=train_tokenizer.pad_token_id, | |
max_new_tokens=1024, # max_length=max_new_tokens+input_sequence | |
min_new_tokens=1, # min_length=min_new_tokens+input_sequence | |
bad_words_ids=test_tokenizer(['\n\nUser:','\n\nAssistant:'], add_special_tokens=False).input_ids | |
) | |
self.repetition_penalty=1.3 | |
self.logger = utils.set_file_logger('transformers.trainer', trainer.args.output_dir) | |
def on_log(self, args, state, control, logs, **kwargs): | |
logger.info(logs) | |
trainer = transformers.Trainer( | |
model=model, | |
train_dataset=train_data, | |
eval_dataset=val_data, | |
args=transformers.TrainingArguments( | |
per_device_train_batch_size=MICRO_BATCH_SIZE, | |
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, | |
warmup_ratio=args.warmup_ratio, | |
num_train_epochs=EPOCHS, | |
max_steps=MAX_STEPS, | |
learning_rate=LEARNING_RATE, | |
fp16=True, | |
logging_steps=args.log_steps, | |
logging_first_step=True, # convenient | |
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no", | |
save_strategy="steps", | |
eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None, | |
save_steps=args.save_steps, | |
output_dir=OUTPUT_DIR, | |
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False, | |
ddp_find_unused_parameters=False if ddp else None, | |
report_to="wandb" if args.wandb else [], | |
ignore_data_skip=args.ignore_data_skip, | |
), | |
data_collator=PROMPT.data_collator() | |
) | |
trainer.add_callback(CustomCallback(trainer)) | |
model.config.use_cache = False | |
old_state_dict = model.state_dict | |
model.state_dict = ( | |
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) | |
).__get__(model, type(model)) | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(model) | |
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint) | |
model.save_pretrained(OUTPUT_DIR) | |