chatlawv1 / interaction.py
teachyourselfcoding's picture
Upload 245 files
fa6856c
raw
history blame
5.99 kB
import sys
import torch
from peft import PeftModel
import transformers
import gradio as gr
import argparse
import warnings
import os
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--lora_path", type=str, default="./lora-Vicuna/checkpoint-final")
parser.add_argument("--use_local", type=int, default=1)
args = parser.parse_args()
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
LOAD_8BIT = True
BASE_MODEL = args.model_path
LORA_WEIGHTS = args.lora_path
# fix the path for local checkpoint
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin")
print(lora_bin_path)
if not os.path.exists(lora_bin_path) and args.use_local:
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin")
print(pytorch_bin_path)
if os.path.exists(pytorch_bin_path):
os.rename(pytorch_bin_path, lora_bin_path)
warnings.warn("The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'")
else:
assert ('Checkpoint is not Found!')
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto", #device_map={"": 0},
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
torch_dtype=torch.float16,
device_map="auto", #device_map={"": 0},
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""The following is a conversation between an AI assistant called Assistant and a human user called User.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""The following is a conversation between an AI assistant called Assistant and a human user called User.
### Instruction:
{instruction}
### Response:"""
if not LOAD_8BIT:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def interaction(
input,
history,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
repetition_penalty=1.0,
max_memory=256,
**kwargs,
):
now_input = input
history = history or []
if len(history) != 0:
input = "\n".join(["User:" + i[0]+"\n"+"Assistant:" + i[1] for i in history]) + "\n" + "User:" + input
if len(input) > max_memory:
input = input[-max_memory:]
print(input)
print(len(input))
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
output = output.split("### Response:")[1].strip()
output = output.replace("Belle", "Vicuna")
if 'User:' in output:
output = output.split("User:")[0]
history.append((now_input, output))
print(history)
return history, history
chatbot = gr.Chatbot().style(color_map=("green", "pink"))
demo = gr.Interface(
fn=interaction,
inputs=[
gr.components.Textbox(
lines=2, label="Input", placeholder="Tell me about alpacas."
),
"state",
gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.9, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=60, label="Top k"),
gr.components.Slider(minimum=1, maximum=5, step=1, value=2, label="Beams"),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=128, label="Max new tokens"
),
gr.components.Slider(
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
),
gr.components.Slider(
minimum=0, maximum=2000, step=1, value=256, label="max memory"
),
],
outputs=[chatbot, "state"],
allow_flagging="auto",
title="Chinese-Vicuna 中文小羊驼",
description="中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。",
)
demo.queue().launch(share=True, inbrowser=True)