Spaces:
Runtime error
Runtime error
import json | |
import os | |
import sys | |
from typing import Dict, List | |
import numpy as np | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, pipeline | |
import trlx | |
from trlx.data.configs import ( | |
ModelConfig, | |
OptimizerConfig, | |
SchedulerConfig, | |
TokenizerConfig, | |
TrainConfig, | |
TRLConfig, | |
) | |
from trlx.models.modeling_ppo import PPOConfig | |
def get_positive_score(scores): | |
"Extract value associated with a positive sentiment from pipeline's output" | |
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | |
default_config = TRLConfig( | |
train=TrainConfig( | |
seq_length=128, | |
epochs=100, | |
total_steps=100000, | |
batch_size=12, | |
checkpoint_interval=10000, | |
eval_interval=100, | |
pipeline="PromptPipeline", | |
trainer="AcceleratePPOTrainer", | |
save_best=False, | |
), | |
model=ModelConfig( | |
model_path="lvwerra/t5-imdb", | |
num_layers_unfrozen=-1, | |
model_arch_type="seq2seq", | |
), | |
tokenizer=TokenizerConfig( | |
tokenizer_path="lvwerra/t5-imdb", | |
padding_side="right", | |
truncation_side="right", | |
), | |
optimizer=OptimizerConfig( | |
name="adamw", | |
kwargs={ | |
"lr": 5.0e-5, | |
"betas": [0.9, 0.999], | |
"eps": 1.0e-8, | |
"weight_decay": 1.0e-6, | |
}, | |
), | |
scheduler=SchedulerConfig( | |
name="cosine_annealing", | |
kwargs={ | |
"T_max": 100000, | |
"eta_min": 5.0e-5, | |
}, | |
), | |
method=PPOConfig( | |
name="PPOConfig", | |
num_rollouts=128, | |
chunk_size=12, | |
ppo_epochs=4, | |
init_kl_coef=0.05, | |
target=6, | |
horizon=10000, | |
gamma=0.99, | |
lam=0.95, | |
cliprange=0.2, | |
cliprange_value=0.2, | |
vf_coef=1, | |
scale_reward=None, | |
ref_mean=None, | |
ref_std=None, | |
cliprange_reward=10, | |
gen_kwargs={ | |
"max_new_tokens": 50, | |
"do_sample": True, | |
"top_k": 0, | |
"top_p": 1, | |
"eos_token_id": -1, | |
}, | |
), | |
) | |
class LengthSampler: | |
""" | |
Samples a length | |
""" | |
def __init__(self, min_value, max_value): | |
self.values = list(range(min_value, max_value)) | |
self.rng = np.random.default_rng(seed=2023) | |
def __call__(self): | |
return self.rng.choice(self.values) | |
def main(hparams={}): | |
config = TRLConfig.update(default_config, hparams) | |
def metric_fn(samples: List[str], **kwargs) -> Dict[str, List[float]]: | |
sentiments = list(map(get_positive_score, sentiment_fn(samples))) | |
return sentiments | |
sentiment_fn = pipeline( | |
"sentiment-analysis", | |
"lvwerra/distilbert-imdb", | |
top_k=2, | |
truncation=True, | |
batch_size=256, | |
device=0 if int(os.environ.get("LOCAL_RANK", 0)) == 0 else -1, | |
) | |
tokenizer = AutoTokenizer.from_pretrained("lvwerra/t5-imdb") | |
def build_imdb_dataset(tokenizer, input_min_text_length=2, input_max_text_length=8): | |
# load imdb with datasets | |
ds = load_dataset("imdb", split="train") | |
ds = ds.rename_columns({"text": "review"}) | |
ds = ds.filter(lambda x: len(x["review"]) > 200, batched=False) | |
input_size = LengthSampler(input_min_text_length, input_max_text_length) | |
def tokenize(sample): | |
sample["review"] = sample["review"].replace("/>br", "") | |
sample["input_ids"] = tokenizer.encode(sample["review"])[: input_size()] + [tokenizer.eos_token_id] | |
sample["query"] = tokenizer.decode(sample["input_ids"]) | |
return sample | |
ds = ds.map(tokenize, batched=False) | |
ds.set_format(type="torch") | |
return ds | |
def build_imdb_dataset_test(tokenizer, input_min_text_length=2, input_max_text_length=8): | |
# load imdb with datasets | |
ds = load_dataset("imdb", split="test") | |
ds = ds.rename_columns({"text": "review"}) | |
ds = ds.filter(lambda x: len(x["review"]) > 200, batched=False) | |
input_size = LengthSampler(input_min_text_length, input_max_text_length) | |
def tokenize(sample): | |
sample["review"] = sample["review"].replace("/>br", "") | |
sample["input_ids"] = tokenizer.encode(sample["review"])[: input_size()] + [tokenizer.eos_token_id] | |
sample["query"] = tokenizer.decode(sample["input_ids"]) | |
return sample | |
ds = ds.map(tokenize, batched=False) | |
ds.set_format(type="torch") | |
return ds | |
dataset = build_imdb_dataset(tokenizer) | |
prompts = dataset["query"] | |
val_prompts = build_imdb_dataset_test(tokenizer)["query"][0:100] | |
trlx.train( | |
prompts=prompts, | |
eval_prompts=val_prompts, | |
reward_fn=metric_fn, | |
config=config, | |
) | |
if __name__ == "__main__": | |
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | |
main(hparams) | |