Spaces:
Runtime error
Runtime error
# Generates positive movie reviews by tuning a pretrained model on IMDB dataset | |
# with a sentiment reward function | |
import json | |
import os | |
import sys | |
from typing import List | |
import torch | |
from datasets import load_dataset | |
from transformers import pipeline | |
import trlx | |
from trlx.data.default_configs import TRLConfig, default_ppo_config | |
def get_positive_score(scores): | |
"Extract value associated with a positive sentiment from pipeline's output" | |
return dict(map(lambda x: tuple(x.values()), scores))["POSITIVE"] | |
def main(hparams={}): | |
# Merge sweep config with default config if given | |
config = TRLConfig.update(default_ppo_config().to_dict(), hparams) | |
if torch.cuda.is_available(): | |
device = int(os.environ.get("LOCAL_RANK", 0)) | |
else: | |
device = -1 | |
sentiment_fn = pipeline( | |
"sentiment-analysis", | |
"lvwerra/distilbert-imdb", | |
top_k=2, | |
truncation=True, | |
batch_size=256, | |
device=device, | |
) | |
def reward_fn(samples: List[str], **kwargs) -> List[float]: | |
sentiments = list(map(get_positive_score, sentiment_fn(samples))) | |
return sentiments | |
# Take few words off of movies reviews as prompts | |
imdb = load_dataset("imdb", split="train+test") | |
prompts = [" ".join(review.split()[:4]) for review in imdb["text"]] | |
trlx.train( | |
reward_fn=reward_fn, | |
prompts=prompts, | |
eval_prompts=["I don't know much about Hungarian underground"] * 256, | |
config=config, | |
) | |
if __name__ == "__main__": | |
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1]) | |
main(hparams) | |