Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import torch | |
import torch.nn as nn | |
import bitsandbytes as bnb | |
from datasets import load_dataset | |
import transformers | |
import argparse | |
import warnings | |
from huggingface_hub import snapshot_download | |
assert ( | |
"LlamaTokenizer" in transformers._import_structure["models.llama"] | |
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" | |
from transformers import LlamaForCausalLM, LlamaTokenizer | |
from peft import ( | |
prepare_model_for_int8_training, | |
LoraConfig, | |
get_peft_model, | |
get_peft_model_state_dict, | |
set_peft_model_state_dict, | |
) | |
def get_peft_state_maybe_zero_3(state_dict, bias): | |
if hasattr(param, "ds_id"): | |
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE | |
with zero.GatheredParameters([param]): | |
param = param.data.cpu().clone().detach() | |
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} | |
return to_return | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--wandb", action="store_true", default=False) | |
parser.add_argument("--data_path", type=str, default="merge.json") | |
parser.add_argument("--output_path", type=str, default="lora-Vicuna") | |
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf") | |
parser.add_argument("--eval_steps", type=int, default=200) | |
parser.add_argument("--save_steps", type=int, default=200) | |
parser.add_argument("--test_size", type=int, default=200) | |
parser.add_argument("--resume_from_checkpoint", type=str, default=None) | |
parser.add_argument("--ignore_data_skip", type=str, default="False") | |
parser.add_argument("--lora_remote_checkpoint", type=str, default=None) | |
parser.add_argument("--local_rank", type=int, default=-1) | |
parser.add_argument("--deepspeed", action="store_true", default=False) | |
args = parser.parse_args() | |
if not args.wandb: | |
os.environ["WANDB_MODE"] = "disable" | |
# optimized for RTX 4090. for larger GPUs, increase some of these? | |
MICRO_BATCH_SIZE = 2 # this could actually be 5 but i like powers of 2 | |
BATCH_SIZE = 128 | |
MAX_STEPS = None | |
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE | |
EPOCHS = 3 # we don't always need 3 tbh | |
LEARNING_RATE = 3e-4 # the Karpathy constant | |
CUTOFF_LEN = 256 # 256 accounts for about 96% of the data | |
LORA_R = 8 | |
LORA_ALPHA = 16 | |
LORA_DROPOUT = 0.05 | |
VAL_SET_SIZE = args.test_size #2000 | |
TARGET_MODULES = [ | |
"q_proj", | |
"v_proj", | |
] | |
DATA_PATH = args.data_path | |
OUTPUT_DIR = args.output_path #"lora-Vicuna" | |
device_map = {"": 0} #"auto" | |
world_size = int(os.environ.get("WORLD_SIZE", 1)) | |
ddp = world_size != 1 | |
if ddp: | |
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} | |
GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size | |
print(args.model_path) | |
model = LlamaForCausalLM.from_pretrained( | |
args.model_path, | |
load_in_8bit=False, | |
torch_dtype=torch.float16, | |
device_map=device_map, | |
).half() | |
tokenizer = LlamaTokenizer.from_pretrained( | |
args.model_path, add_eos_token=True | |
) | |
#model = prepare_model_for_int8_training(model) | |
config = LoraConfig( | |
r=LORA_R, | |
lora_alpha=LORA_ALPHA, | |
target_modules=TARGET_MODULES, | |
lora_dropout=LORA_DROPOUT, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
model = get_peft_model(model, config) | |
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token | |
#tokenizer.padding_side = "left" # Allow batched inference | |
data = load_dataset("json", data_files=DATA_PATH) | |
now_max_steps = max((len(data["train"]) - VAL_SET_SIZE) // BATCH_SIZE * EPOCHS, EPOCHS) | |
if args.resume_from_checkpoint: | |
if args.lora_remote_checkpoint is not None: | |
snapshot_download(repo_id=args.lora_remote_checkpoint, allow_patterns=["*.pt", "*.bin", "*.json"], local_dir=args.resume_from_checkpoint) | |
# Check the available weights and load them | |
checkpoint_name = os.path.join( | |
args.resume_from_checkpoint, "pytorch_model.bin" | |
) # Full checkpoint | |
if not os.path.exists(checkpoint_name): | |
pytorch_bin_path = checkpoint_name | |
checkpoint_name = os.path.join( | |
args.resume_from_checkpoint, "adapter_model.bin" | |
) # only LoRA model - LoRA config above has to fit | |
if os.path.exists(checkpoint_name): | |
os.rename(checkpoint_name, pytorch_bin_path) | |
warnings.warn("The file name of the lora checkpoint'adapter_model.bin' is replaced with 'pytorch_model.bin'") | |
else: | |
args.resume_from_checkpoint = ( | |
None # So the trainer won't try loading its state | |
) | |
# The two files above have a different name depending on how they were saved, but are actually the same. | |
if os.path.exists(checkpoint_name): | |
print(f"Restarting from {checkpoint_name}") | |
adapters_weights = torch.load(checkpoint_name) | |
model = set_peft_model_state_dict(model, adapters_weights) | |
else: | |
print(f"Checkpoint {checkpoint_name} not found") | |
train_args_path = os.path.join(args.resume_from_checkpoint, "trainer_state.json") | |
if os.path.exists(train_args_path): | |
import json | |
base_train_args = json.load(open(train_args_path, 'r')) | |
base_max_steps = base_train_args["max_steps"] | |
resume_scale = base_max_steps / now_max_steps | |
if base_max_steps > now_max_steps: | |
warnings.warn("epoch {} replace to the base_max_steps {}".format(EPOCHS, base_max_steps)) | |
EPOCHS = None | |
MAX_STEPS = base_max_steps | |
else: | |
MAX_STEPS = now_max_steps | |
else: | |
MAX_STEPS = now_max_steps | |
model.print_trainable_parameters() | |
def generate_prompt(data_point): | |
# sorry about the formatting disaster gotta move fast | |
if data_point["input"]: | |
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{data_point["instruction"]} | |
### Input: | |
{data_point["input"]} | |
### Response: | |
{data_point["output"]}""" | |
else: | |
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{data_point["instruction"]} | |
### Response: | |
{data_point["output"]}""" | |
def tokenize(prompt): | |
# there's probably a way to do this with the tokenizer settings | |
# but again, gotta move fast | |
result = tokenizer( | |
prompt, | |
truncation=True, | |
max_length=CUTOFF_LEN + 1, | |
padding="max_length", | |
) | |
return { | |
"input_ids": result["input_ids"][:-1], | |
"attention_mask": result["attention_mask"][:-1], | |
} | |
def generate_and_tokenize_prompt(data_point): | |
# This function masks out the labels for the input, | |
# so that our loss is computed only on the response. | |
user_prompt = ( | |
( | |
f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{data_point["instruction"]} | |
### Input: | |
{data_point["input"]} | |
### Response: | |
""" | |
) | |
if data_point["input"] | |
else ( | |
f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
{data_point["instruction"]} | |
### Response: | |
""" | |
) | |
) | |
len_user_prompt_tokens = ( | |
len( | |
tokenizer( | |
user_prompt, | |
truncation=True, | |
max_length=CUTOFF_LEN + 1, | |
)["input_ids"] | |
) | |
- 1 | |
) # no eos token | |
full_tokens = tokenizer( | |
user_prompt + data_point["output"], | |
truncation=True, | |
max_length=CUTOFF_LEN + 1, | |
padding="max_length", | |
)["input_ids"][:-1] | |
return { | |
"input_ids": full_tokens, | |
"labels": [-100] * len_user_prompt_tokens | |
+ full_tokens[len_user_prompt_tokens:], | |
"attention_mask": [1] * (len(full_tokens)), | |
} | |
if VAL_SET_SIZE > 0: | |
train_val = data["train"].train_test_split( | |
test_size=VAL_SET_SIZE, shuffle=True, seed=42 | |
) | |
train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt) | |
val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt) | |
else: | |
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt) | |
val_data = None | |
trainer = transformers.Trainer( | |
model=model, | |
train_dataset=train_data, | |
eval_dataset=val_data, | |
args=transformers.TrainingArguments( | |
per_device_train_batch_size=MICRO_BATCH_SIZE, | |
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, | |
warmup_steps=100, | |
num_train_epochs=EPOCHS, | |
max_steps=MAX_STEPS, | |
learning_rate=LEARNING_RATE, | |
fp16=True, | |
logging_steps=20, | |
evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no", | |
save_strategy="steps", | |
eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None, | |
save_steps=args.save_steps, | |
output_dir=OUTPUT_DIR, | |
save_total_limit=30, | |
load_best_model_at_end=True if VAL_SET_SIZE > 0 else False, | |
ddp_find_unused_parameters=False if ddp else None, | |
report_to="wandb" if args.wandb else [], | |
ignore_data_skip=args.ignore_data_skip, | |
deepspeed="sample/zero_config.json" if args.deepspeed else None, | |
), | |
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False) | |
) | |
model.config.use_cache = False | |
old_state_dict = model.state_dict | |
model.state_dict = ( | |
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) | |
).__get__(model, type(model)) | |
if torch.__version__ >= "2" and sys.platform != "win32": | |
model = torch.compile(model) | |
print("\n If there's a warning about missing keys above, please disregard :)") | |
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint) | |
model.save_pretrained(OUTPUT_DIR) | |