Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spacy
|
3 |
+
from spacy.pipeline import EntityRuler
|
4 |
+
from spacy.language import Language
|
5 |
+
from spacy.matcher import PhraseMatcher
|
6 |
+
from spacy.tokens import Span
|
7 |
+
|
8 |
+
nlp = spacy.load("en_core_web_md")
|
9 |
+
|
10 |
+
#Text 1
|
11 |
+
def process_text(text1):
|
12 |
+
d = load(text1)
|
13 |
+
return [
|
14 |
+
for ent in doc1.ents:
|
15 |
+
print(ent.text, ent.label_)
|
16 |
+
for ent in doc1.ents:
|
17 |
+
print(ent.label_, spacy.explain(ent.label_))
|
18 |
+
]
|
19 |
+
|
20 |
+
def load(text):
|
21 |
+
user_input = str(text.strip())
|
22 |
+
doc1 = nlp(user_input)
|
23 |
+
|
24 |
+
#Text 2
|
25 |
+
def entities(text2):
|
26 |
+
a = named_ents(text2)
|
27 |
+
return [print("patterns:", patterns)]
|
28 |
+
|
29 |
+
def named_ents(text):
|
30 |
+
pattern_list = []
|
31 |
+
for i in text.strip().split():
|
32 |
+
pattern_list.append(i)
|
33 |
+
|
34 |
+
patterns = list(nlp.pipe(pattern_list))
|
35 |
+
|
36 |
+
#Text 3
|
37 |
+
def run(text3):
|
38 |
+
b = pipe(text3)
|
39 |
+
return [
|
40 |
+
doc
|
41 |
+
print(nlp.pipe_names)]
|
42 |
+
|
43 |
+
def pipe(text):
|
44 |
+
matcher = PhraseMatcher(nlp.vocab)
|
45 |
+
#Create label for pattern
|
46 |
+
user_named = str(text.strip()) #gradio text box here to enter pattern label
|
47 |
+
matcher.add(user_named, patterns)
|
48 |
+
# Define the custom component
|
49 |
+
@Language.component("covid_component")
|
50 |
+
def covid_component_function(doc):
|
51 |
+
# Apply the matcher to the doc
|
52 |
+
matches = matcher(doc)
|
53 |
+
# Create a Span for each match and assign the label "ANIMAL"
|
54 |
+
spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
|
55 |
+
# Overwrite the doc.ents with the matched spans
|
56 |
+
doc.ents = spans
|
57 |
+
return doc
|
58 |
+
# Add the component to the pipeline after the "ner" component
|
59 |
+
nlp.add_pipe((user_named + "component"), after="ner")
|
60 |
+
print(nlp.pipe_names)
|
61 |
+
|
62 |
+
#Text 4
|
63 |
+
|
64 |
+
def test(text4):
|
65 |
+
c = new_sample(text4)
|
66 |
+
return [
|
67 |
+
print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
68 |
+
Counter(labels)]
|
69 |
+
|
70 |
+
|
71 |
+
def new_sample(text):
|
72 |
+
user_doc = str(text).strip())
|
73 |
+
apply_doc = nlp(user_doc)
|
74 |
+
print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
75 |
+
#Count total mentions of label COVID in the 3rd document
|
76 |
+
from collections import Counter
|
77 |
+
labels = [ent.label_ for ent in apply_doc.ents]
|
78 |
+
Counter(labels)
|
79 |
+
|
80 |
+
|
81 |
+
#user_input = input(str("")) #gradio text box here to enter sample text
|
82 |
+
#doc1 = nlp(user_input)
|
83 |
+
|
84 |
+
#print list of entities captured by pertained model
|
85 |
+
#for ent in doc1.ents:
|
86 |
+
#print(ent.text, ent.label_)
|
87 |
+
|
88 |
+
#inspect labels and their meaning
|
89 |
+
#for ent in doc1.ents:
|
90 |
+
#print(ent.label_, spacy.explain(ent.label_))
|
91 |
+
|
92 |
+
#Use PhraseMatcher to find all references of interest
|
93 |
+
#Define the different references to Covid
|
94 |
+
#user_entries = input(str("")) #gradio text box here to enter sample terms
|
95 |
+
#pattern_list = []
|
96 |
+
|
97 |
+
#for i in user_entries.strip().split():
|
98 |
+
# pattern_list.append(i)
|
99 |
+
|
100 |
+
#patterns = list(nlp.pipe(pattern_list))
|
101 |
+
#print("patterns:", patterns)
|
102 |
+
|
103 |
+
#Instantiate PhraseMatcher
|
104 |
+
#matcher = PhraseMatcher(nlp.vocab)
|
105 |
+
|
106 |
+
#Create label for pattern
|
107 |
+
#user_named = input(str("").strip()) #gradio text box here to enter pattern label
|
108 |
+
#matcher.add(user_named, patterns)
|
109 |
+
|
110 |
+
# Define the custom component
|
111 |
+
#@Language.component("covid_component")
|
112 |
+
#def covid_component_function(doc):
|
113 |
+
# Apply the matcher to the doc
|
114 |
+
# matches = matcher(doc)
|
115 |
+
# Create a Span for each match and assign the label "ANIMAL"
|
116 |
+
# spans = [Span(doc, start, end, label=user_named) for match_id, start, end in matches]
|
117 |
+
# Overwrite the doc.ents with the matched spans
|
118 |
+
# doc.ents = spans
|
119 |
+
# return doc
|
120 |
+
|
121 |
+
# Add the component to the pipeline after the "ner" component
|
122 |
+
#nlp.add_pipe((user_named + "component"), after="ner")
|
123 |
+
#print(nlp.pipe_names)
|
124 |
+
|
125 |
+
|
126 |
+
#Verify that your model now detects all specified mentions of Covid on another text
|
127 |
+
#user_doc = input(str("").strip())
|
128 |
+
#apply_doc = nlp(user_doc)
|
129 |
+
#print([(ent.text, ent.label_) for ent in apply_doc.ents])
|
130 |
+
|
131 |
+
#Count total mentions of label COVID in the 3rd document
|
132 |
+
#from collections import Counter
|
133 |
+
#labels = [ent.label_ for ent in apply_doc.ents]
|
134 |
+
#Counter(labels)
|
135 |
+
|
136 |
+
iface = gr.Interface(
|
137 |
+
process_text,
|
138 |
+
[gr.inputs.Textbox(lines=10, default="The coronavirus disease 2019 (COVID-19) pandemic is the result of widespread infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).", label="Text to Run through Entity Recognition")],
|
139 |
+
|
140 |
+
entities,
|
141 |
+
[gr.inputs.Textbox(lines=3, default= ("Coronavirus, coronavirus, COVID-19, SARS-CoV-2, SARS‐CoV‐2"), label="Enter entity references")],
|
142 |
+
|
143 |
+
run,
|
144 |
+
[gr.inputs.Textbox(lines=1, default= ("COVID"), label="Enter entity label")],
|
145 |
+
gr.outputs.HighlightedText(),
|
146 |
+
)
|
147 |
+
|
148 |
+
test,
|
149 |
+
[gr.inputs.Textbox(lines=1, default= ("The tissue distribution of the virus-targeted receptor protein, angiotensin converting enzyme II (ACE2), determines which organs will be attacked by SARS‐CoV‐2."), label="Test: Enter new sentence containing named entity")],
|
150 |
+
gr.outputs.HighlightedText(),
|
151 |
+
)
|
152 |
+
iface.launch()
|