|
import gradio as gr |
|
import onnxruntime as rt |
|
from transformers import AutoTokenizer |
|
import torch |
|
import json |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") |
|
|
|
|
|
try: |
|
with open("genre_types_encoded.json", "r") as fp: |
|
encode_genre_types = json.load(fp) |
|
except FileNotFoundError: |
|
print("Error: 'genre_types_encoded.json' not found. Make sure the file exists.") |
|
exit(1) |
|
|
|
|
|
genres = list(encode_genre_types.keys()) |
|
|
|
|
|
try: |
|
inf_session = rt.InferenceSession('udemy-classifier-quantized.onnx') |
|
input_name = inf_session.get_inputs()[0].name |
|
output_name = inf_session.get_outputs()[0].name |
|
except FileNotFoundError: |
|
print("Error: 'udemy-classifier-quantized.onnx' not found. Make sure the file exists.") |
|
exit(1) |
|
|
|
|
|
def classify_courses_genre(description): |
|
input_ids = tokenizer(description, truncation=True, padding=True, return_tensors="pt")['input_ids'][:,:512] |
|
logits = inf_session.run([output_name], {input_name: input_ids.cpu().numpy()})[0] |
|
logits = torch.FloatTensor(logits) |
|
probs = torch.sigmoid(logits)[0] |
|
return dict(zip(genres, map(float, probs))) |
|
|
|
|
|
iface = gr.Interface(fn=classify_courses_genre, inputs="text", outputs=gr.components.Label(num_top_classes=5)) |
|
|
|
|
|
iface.launch(inline = False) |
|
|