|
import tensorflow as tf |
|
from tensorflow.keras import layers, models |
|
import numpy as np |
|
|
|
|
|
class TrajectoryGRU2D(layers.Layer): |
|
def __init__(self, filters, kernel_size, return_sequences=True, **kwargs): |
|
super().__init__(**kwargs) |
|
self.filters = filters |
|
self.kernel_size = kernel_size |
|
self.return_sequences = return_sequences |
|
|
|
|
|
self.input_projection = layers.Conv2D(filters, (1, 1), padding="same") |
|
|
|
|
|
self.conv_z = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid") |
|
self.conv_r = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid") |
|
self.conv_h = layers.Conv2D(filters, kernel_size, padding="same", activation="tanh") |
|
|
|
|
|
self.motion_conv = layers.Conv2D(filters, kernel_size, padding="same", activation="tanh") |
|
|
|
def build(self, input_shape): |
|
|
|
self.input_projection.build(input_shape[1:]) |
|
super().build(input_shape) |
|
|
|
def call(self, inputs): |
|
|
|
batch_size, time_steps, height, width, channels = tf.unstack(tf.shape(inputs)) |
|
time_steps = inputs.shape[1] |
|
|
|
|
|
h_t = tf.zeros((batch_size, height, width, self.filters)) |
|
|
|
|
|
outputs = [] |
|
|
|
|
|
for t in range(time_steps): |
|
|
|
x_t = inputs[:, t, :, :, :] |
|
|
|
|
|
x_projected = self.input_projection(x_t) |
|
|
|
|
|
motion_update = self.motion_conv(x_projected) |
|
|
|
|
|
combined = tf.concat([x_projected, h_t, motion_update], axis=-1) |
|
|
|
|
|
z = self.conv_z(combined) |
|
r = self.conv_r(combined) |
|
|
|
|
|
h_tilde = self.conv_h(tf.concat([x_projected, r * h_t], axis=-1)) |
|
|
|
|
|
h_t = (1 - z) * h_t + z * h_tilde + motion_update |
|
|
|
|
|
if self.return_sequences: |
|
outputs.append(h_t) |
|
|
|
|
|
if self.return_sequences: |
|
outputs = tf.stack(outputs, axis=1) |
|
else: |
|
outputs = h_t |
|
|
|
return outputs |
|
|
|
def compute_output_shape(self, input_shape): |
|
if self.return_sequences: |
|
return (input_shape[0], input_shape[1], input_shape[2], input_shape[3], self.filters) |
|
else: |
|
return (input_shape[0], input_shape[2], input_shape[3], self.filters) |
|
|
|
|
|
def build_tgru_model(input_shape=(8, 95, 95, 2)): |
|
input_tensor = layers.Input(shape=input_shape) |
|
|
|
|
|
x = TrajectoryGRU2D(filters=32, kernel_size=(3, 3), return_sequences=True)(input_tensor) |
|
x = layers.Conv3D(filters=32, kernel_size=(3, 3, 3), padding='same', activation='relu')(x) |
|
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x) |
|
|
|
x = TrajectoryGRU2D(filters=64, kernel_size=(3, 3), return_sequences=True)(x) |
|
x = layers.Conv3D(filters=64, kernel_size=(3, 3, 3), padding='same', activation='relu')(x) |
|
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x) |
|
|
|
x = TrajectoryGRU2D(filters=128, kernel_size=(3, 3), return_sequences=True)(x) |
|
x = layers.Conv3D(filters=128, kernel_size=(3, 3, 3), padding='same', activation='relu')(x) |
|
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x) |
|
|
|
|
|
x = layers.Flatten()(x) |
|
|
|
|
|
model = models.Model(inputs=input_tensor, outputs=x) |
|
return model |
|
|
|
def radial_structure_subnet(input_shape): |
|
""" |
|
Creates the subnet for extracting TC radial structure features using a five-branch CNN design with 2D convolutions. |
|
|
|
Parameters: |
|
- input_shape: tuple, shape of the input data (e.g., (95, 95, 3)) |
|
|
|
Returns: |
|
- model: tf.keras.Model, the radial structure subnet model |
|
""" |
|
|
|
input_tensor = layers.Input(shape=input_shape) |
|
|
|
|
|
|
|
|
|
|
|
nw_quadrant = input_tensor[:, :input_shape[0]//2, :input_shape[1]//2, :] |
|
ne_quadrant = input_tensor[:, :input_shape[0]//2, input_shape[1]//2:, :] |
|
sw_quadrant = input_tensor[:, input_shape[0]//2:, :input_shape[1]//2, :] |
|
se_quadrant = input_tensor[:, input_shape[0]//2:, input_shape[1]//2:, :] |
|
|
|
|
|
target_height = max(input_shape[0]//2, input_shape[0] - input_shape[0]//2) |
|
target_width = max(input_shape[1]//2, input_shape[1] - input_shape[1]//2) |
|
|
|
|
|
nw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - nw_quadrant.shape[1]), |
|
(0, target_width - nw_quadrant.shape[2])))(nw_quadrant) |
|
ne_quadrant = layers.ZeroPadding2D(padding=((0, target_height - ne_quadrant.shape[1]), |
|
(0, target_width - ne_quadrant.shape[2])))(ne_quadrant) |
|
sw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - sw_quadrant.shape[1]), |
|
(0, target_width - sw_quadrant.shape[2])))(sw_quadrant) |
|
se_quadrant = layers.ZeroPadding2D(padding=((0, target_height - se_quadrant.shape[1]), |
|
(0, target_width - se_quadrant.shape[2])))(se_quadrant) |
|
|
|
print(nw_quadrant.shape) |
|
print(ne_quadrant.shape) |
|
print(sw_quadrant.shape) |
|
print(se_quadrant.shape) |
|
|
|
main_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(input_tensor) |
|
y=layers.MaxPool2D()(main_branch) |
|
|
|
y = layers.ZeroPadding2D(padding=((0, target_height - y.shape[1]), |
|
(0, target_width - y.shape[2])))(y) |
|
|
|
nw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(nw_quadrant) |
|
ne_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(ne_quadrant) |
|
sw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(sw_quadrant) |
|
se_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(se_quadrant) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fusion = layers.concatenate([y, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) |
|
|
|
|
|
x = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(fusion) |
|
x=layers.MaxPool2D(pool_size=(2, 2))(x) |
|
|
|
nw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch) |
|
|
|
ne_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch) |
|
sw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch) |
|
se_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(se_branch) |
|
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch) |
|
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch) |
|
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch) |
|
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch) |
|
|
|
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) |
|
x = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(fusion) |
|
x=layers.MaxPool2D(pool_size=(2, 2))(x) |
|
|
|
nw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch) |
|
|
|
ne_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch) |
|
sw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch) |
|
se_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(se_branch) |
|
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch) |
|
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch) |
|
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch) |
|
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch) |
|
|
|
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1) |
|
x = layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(fusion) |
|
x=layers.Conv2D(filters=32, kernel_size=(3, 3), activation=None)(x) |
|
|
|
x=layers.Flatten()(x) |
|
model = models.Model(inputs=input_tensor, outputs=x) |
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_cnn_model(input_shape=(8, 8, 1)): |
|
|
|
input_tensor = layers.Input(shape=input_shape) |
|
|
|
|
|
x = layers.Conv2D(64, (3, 3), padding='same')(input_tensor) |
|
x = layers.BatchNormalization()(x) |
|
x = layers.ReLU()(x) |
|
|
|
|
|
x = layers.Flatten()(x) |
|
|
|
|
|
model = models.Model(inputs=input_tensor, outputs=x) |
|
|
|
return model |
|
|
|
from tensorflow.keras import layers, models, Input |
|
|
|
def build_combined_model(): |
|
|
|
input_shape_3d = (8, 95, 95, 2) |
|
input_shape_radial = (95, 95, 8) |
|
input_shape_cnn = (8, 8, 1) |
|
|
|
input_shape_latitude = (8,) |
|
input_shape_longitude = (8,) |
|
input_shape_other = (9,) |
|
|
|
|
|
model_3d = build_tgru_model(input_shape=input_shape_3d) |
|
model_radial = radial_structure_subnet(input_shape=input_shape_radial) |
|
model_cnn = build_cnn_model(input_shape=input_shape_cnn) |
|
|
|
|
|
input_latitude = Input(shape=input_shape_latitude ,name="latitude_input") |
|
input_longitude = Input(shape=input_shape_longitude, name="longitude_input") |
|
input_other = Input(shape=input_shape_other, name="other_input") |
|
|
|
|
|
flat_latitude = layers.Dense(32,activation='relu')(input_latitude) |
|
flat_longitude = layers.Dense(32,activation='relu')(input_longitude) |
|
flat_other = layers.Dense(64,activation='relu')(input_other) |
|
|
|
|
|
combined = layers.concatenate([ |
|
model_3d.output, |
|
model_radial.output, |
|
model_cnn.output, |
|
flat_latitude, |
|
flat_longitude, |
|
flat_other |
|
]) |
|
|
|
|
|
x = layers.Dense(128, activation='relu')(combined) |
|
x = layers.Dense(1, activation=None)(x) |
|
|
|
|
|
final_model = models.Model( |
|
inputs=[model_3d.input, model_radial.input, model_cnn.input, |
|
input_latitude, input_longitude, input_other ], |
|
outputs=x |
|
) |
|
|
|
return final_model |
|
|
|
import h5py |
|
|
|
|
|
|
|
|
|
|
|
|
|
model = build_combined_model() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dummy_input = [ |
|
tf.random.normal((1, 8, 95, 95, 2)), |
|
tf.random.normal((1, 95, 95, 8)), |
|
tf.random.normal((1, 8, 8, 1)), |
|
tf.random.normal((1, 8)), |
|
tf.random.normal((1, 8)), |
|
tf.random.normal((1, 9)), |
|
] |
|
_ = model(dummy_input) |
|
|
|
|
|
model.load_weights("Trj_GRU.weights.h5") |
|
|
|
|
|
|
|
def predict_trajgru(reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test): |
|
y=model.predict([reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test ]) |
|
return y |