Spaces:
Runtime error
Runtime error
initial commit
Browse files- README.md +4 -2
- app.py +37 -0
- calc.ipynb +270 -0
- impuestos.py +46 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -6,8 +6,10 @@ colorTo: green
|
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.10.0
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.10.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Ingresa tu renta y presiona enter!
|
14 |
+
|
15 |
+
Los datos de tramos actuales usados los puedes encontrar [aqui][https://www.sii.cl/valores_y_fechas/impuesto_2da_categoria/impuesto2022.htm] y los de la reforma [aca](https://chocale.cl/2022/07/reforma-tributaria-gobierno-claves-proyecto-impuestos/)
|
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
from impuestos import TRAMOS, TRAMOS_REFORMA, get_table
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
def main() -> None:
|
10 |
+
st.header("Calcula tu impuesto a la renta :moneybag: :dollar: :bar_chart:")
|
11 |
+
|
12 |
+
with st.expander("Como se usa esta cosa?"):
|
13 |
+
st.write(Path("README.md").read_text())
|
14 |
+
|
15 |
+
st.subheader("Ingresa tus datos")
|
16 |
+
sueldo_bruto = st.number_input("Sueldo Bruto Mensual", value=1800000, min_value=300000)
|
17 |
+
|
18 |
+
st.subheader("Tabla de Impuestos Actual")
|
19 |
+
table = get_table(sueldo_bruto, TRAMOS)
|
20 |
+
st.dataframe(table)
|
21 |
+
total = table["Impuesto"].sum()
|
22 |
+
st.text(f"Pagaras en Total: ${total}")
|
23 |
+
|
24 |
+
st.subheader("Tabla de Impuestos Reforma")
|
25 |
+
table = get_table(sueldo_bruto, TRAMOS_REFORMA)
|
26 |
+
st.dataframe(table)
|
27 |
+
total = table["Impuesto"].sum()
|
28 |
+
st.text(f"Con la reforma pagaras en Total: ${total}")
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
st.set_page_config(
|
32 |
+
"Calculador de impuestos",
|
33 |
+
"📊",
|
34 |
+
initial_sidebar_state="expanded",
|
35 |
+
layout="wide",
|
36 |
+
)
|
37 |
+
main()
|
calc.ipynb
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from impuestos import *"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 2,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [
|
17 |
+
{
|
18 |
+
"name": "stdout",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"786384 0\n",
|
22 |
+
"1747440 0.04\n"
|
23 |
+
]
|
24 |
+
}
|
25 |
+
],
|
26 |
+
"source": [
|
27 |
+
"sueldo_bruto = 1_200_000\n",
|
28 |
+
"\n",
|
29 |
+
"impuesto = 0\n",
|
30 |
+
"for tramo, rate in TRAMOS.items():\n",
|
31 |
+
" print(tramo, rate)\n",
|
32 |
+
" delta = sueldo_bruto - tramo\n",
|
33 |
+
" if delta < 0:\n",
|
34 |
+
" break\n",
|
35 |
+
" impuesto += delta*rate"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": 3,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"text/plain": [
|
46 |
+
"[786384, 1747440, 2912400, 4077360, 5242320, 6989760, 18056880, 99999999]"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"execution_count": 3,
|
50 |
+
"metadata": {},
|
51 |
+
"output_type": "execute_result"
|
52 |
+
}
|
53 |
+
],
|
54 |
+
"source": [
|
55 |
+
"list(TRAMOS.keys())"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 18,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"def descomponer_en_tramos(sueldo_bruto, tramos=TRAMOS):\n",
|
65 |
+
" descomp = []\n",
|
66 |
+
" impuestos = []\n",
|
67 |
+
" tramo_anterior = 0\n",
|
68 |
+
" for tramo, descuento in tramos.items():\n",
|
69 |
+
" delta = min(sueldo_bruto, tramo) - tramo_anterior\n",
|
70 |
+
" if delta>0:\n",
|
71 |
+
" descomp.append(delta)\n",
|
72 |
+
" impuestos.append(int(delta*descuento))\n",
|
73 |
+
" tramo_anterior = tramo\n",
|
74 |
+
" return descomp, impuestos"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 19,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [
|
82 |
+
{
|
83 |
+
"data": {
|
84 |
+
"text/plain": [
|
85 |
+
"([786384, 413616], [0, 16544])"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"execution_count": 19,
|
89 |
+
"metadata": {},
|
90 |
+
"output_type": "execute_result"
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"source": [
|
94 |
+
"sueldo_bruto = 1_200_000\n",
|
95 |
+
"descomponer_en_tramos(sueldo_bruto, TRAMOS)"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 20,
|
101 |
+
"metadata": {},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"import pandas as pd\n"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": 21,
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [],
|
112 |
+
"source": [
|
113 |
+
"def get_table(sueldo_bruto, tramos=TRAMOS):\n",
|
114 |
+
" _tramos = [0]+list(tramos.keys())\n",
|
115 |
+
" tasas = tramos.values()\n",
|
116 |
+
" data = [[desde, hasta, monto, tasa, impuesto] for desde, hasta, tasa, monto, impuesto in zip(_tramos[:-1], _tramos[1:], tasas, *descomponer_en_tramos(sueldo_bruto))]\n",
|
117 |
+
" df = pd.DataFrame(data=data, columns=[\"Desde\", \"Hasta\", \"Monto\", \"Tasa\", \"Impuesto\"])\n",
|
118 |
+
" return df"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 22,
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [
|
126 |
+
{
|
127 |
+
"data": {
|
128 |
+
"text/html": [
|
129 |
+
"<div>\n",
|
130 |
+
"<style scoped>\n",
|
131 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
132 |
+
" vertical-align: middle;\n",
|
133 |
+
" }\n",
|
134 |
+
"\n",
|
135 |
+
" .dataframe tbody tr th {\n",
|
136 |
+
" vertical-align: top;\n",
|
137 |
+
" }\n",
|
138 |
+
"\n",
|
139 |
+
" .dataframe thead th {\n",
|
140 |
+
" text-align: right;\n",
|
141 |
+
" }\n",
|
142 |
+
"</style>\n",
|
143 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
144 |
+
" <thead>\n",
|
145 |
+
" <tr style=\"text-align: right;\">\n",
|
146 |
+
" <th></th>\n",
|
147 |
+
" <th>Desde</th>\n",
|
148 |
+
" <th>Hasta</th>\n",
|
149 |
+
" <th>Monto</th>\n",
|
150 |
+
" <th>Tasa</th>\n",
|
151 |
+
" <th>Impuesto</th>\n",
|
152 |
+
" </tr>\n",
|
153 |
+
" </thead>\n",
|
154 |
+
" <tbody>\n",
|
155 |
+
" <tr>\n",
|
156 |
+
" <th>0</th>\n",
|
157 |
+
" <td>0</td>\n",
|
158 |
+
" <td>786384</td>\n",
|
159 |
+
" <td>786384</td>\n",
|
160 |
+
" <td>0.000</td>\n",
|
161 |
+
" <td>0</td>\n",
|
162 |
+
" </tr>\n",
|
163 |
+
" <tr>\n",
|
164 |
+
" <th>1</th>\n",
|
165 |
+
" <td>786384</td>\n",
|
166 |
+
" <td>1747440</td>\n",
|
167 |
+
" <td>961056</td>\n",
|
168 |
+
" <td>0.040</td>\n",
|
169 |
+
" <td>38442</td>\n",
|
170 |
+
" </tr>\n",
|
171 |
+
" <tr>\n",
|
172 |
+
" <th>2</th>\n",
|
173 |
+
" <td>1747440</td>\n",
|
174 |
+
" <td>2912400</td>\n",
|
175 |
+
" <td>1164960</td>\n",
|
176 |
+
" <td>0.080</td>\n",
|
177 |
+
" <td>93196</td>\n",
|
178 |
+
" </tr>\n",
|
179 |
+
" <tr>\n",
|
180 |
+
" <th>3</th>\n",
|
181 |
+
" <td>2912400</td>\n",
|
182 |
+
" <td>4077360</td>\n",
|
183 |
+
" <td>1164960</td>\n",
|
184 |
+
" <td>0.135</td>\n",
|
185 |
+
" <td>157269</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>4</th>\n",
|
189 |
+
" <td>4077360</td>\n",
|
190 |
+
" <td>5242320</td>\n",
|
191 |
+
" <td>1164960</td>\n",
|
192 |
+
" <td>0.230</td>\n",
|
193 |
+
" <td>267940</td>\n",
|
194 |
+
" </tr>\n",
|
195 |
+
" <tr>\n",
|
196 |
+
" <th>5</th>\n",
|
197 |
+
" <td>5242320</td>\n",
|
198 |
+
" <td>6989760</td>\n",
|
199 |
+
" <td>1747440</td>\n",
|
200 |
+
" <td>0.304</td>\n",
|
201 |
+
" <td>531221</td>\n",
|
202 |
+
" </tr>\n",
|
203 |
+
" <tr>\n",
|
204 |
+
" <th>6</th>\n",
|
205 |
+
" <td>6989760</td>\n",
|
206 |
+
" <td>18056880</td>\n",
|
207 |
+
" <td>3010240</td>\n",
|
208 |
+
" <td>0.350</td>\n",
|
209 |
+
" <td>1053584</td>\n",
|
210 |
+
" </tr>\n",
|
211 |
+
" </tbody>\n",
|
212 |
+
"</table>\n",
|
213 |
+
"</div>"
|
214 |
+
],
|
215 |
+
"text/plain": [
|
216 |
+
" Desde Hasta Monto Tasa Impuesto\n",
|
217 |
+
"0 0 786384 786384 0.000 0\n",
|
218 |
+
"1 786384 1747440 961056 0.040 38442\n",
|
219 |
+
"2 1747440 2912400 1164960 0.080 93196\n",
|
220 |
+
"3 2912400 4077360 1164960 0.135 157269\n",
|
221 |
+
"4 4077360 5242320 1164960 0.230 267940\n",
|
222 |
+
"5 5242320 6989760 1747440 0.304 531221\n",
|
223 |
+
"6 6989760 18056880 3010240 0.350 1053584"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
"execution_count": 22,
|
227 |
+
"metadata": {},
|
228 |
+
"output_type": "execute_result"
|
229 |
+
}
|
230 |
+
],
|
231 |
+
"source": [
|
232 |
+
"get_table(10000000)"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": null,
|
238 |
+
"metadata": {},
|
239 |
+
"outputs": [],
|
240 |
+
"source": []
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"metadata": {
|
244 |
+
"kernelspec": {
|
245 |
+
"display_name": "Python 3.10.2 ('st')",
|
246 |
+
"language": "python",
|
247 |
+
"name": "python3"
|
248 |
+
},
|
249 |
+
"language_info": {
|
250 |
+
"codemirror_mode": {
|
251 |
+
"name": "ipython",
|
252 |
+
"version": 3
|
253 |
+
},
|
254 |
+
"file_extension": ".py",
|
255 |
+
"mimetype": "text/x-python",
|
256 |
+
"name": "python",
|
257 |
+
"nbconvert_exporter": "python",
|
258 |
+
"pygments_lexer": "ipython3",
|
259 |
+
"version": "3.10.2"
|
260 |
+
},
|
261 |
+
"orig_nbformat": 4,
|
262 |
+
"vscode": {
|
263 |
+
"interpreter": {
|
264 |
+
"hash": "885b610356171de8141a812cff200370cfd21ab3bf3d712138f61360bb82c1dd"
|
265 |
+
}
|
266 |
+
}
|
267 |
+
},
|
268 |
+
"nbformat": 4,
|
269 |
+
"nbformat_minor": 2
|
270 |
+
}
|
impuestos.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
#Valores de Junio 2022
|
4 |
+
TRAMOS = { 777000 :0,
|
5 |
+
1727000 :0.04,
|
6 |
+
2878000 :0.08,
|
7 |
+
4029000 :0.135,
|
8 |
+
5180000 :0.23,
|
9 |
+
6906000 :0.304,
|
10 |
+
17842000 :0.35,
|
11 |
+
99999999 :0.4}
|
12 |
+
|
13 |
+
TRAMOS_REFORMA = {
|
14 |
+
777000 :0,
|
15 |
+
1727000 :0.04,
|
16 |
+
2878000 :0.08,
|
17 |
+
4030000 :0.135,
|
18 |
+
5242320 :0.26,
|
19 |
+
6331000 :0.35,
|
20 |
+
8057000 :0.40,
|
21 |
+
99999999 :0.43}
|
22 |
+
|
23 |
+
def descomponer_en_tramos(sueldo_bruto, tramos=TRAMOS):
|
24 |
+
"""
|
25 |
+
Descompone un sueldo bruto en tramos de impuesto
|
26 |
+
"""
|
27 |
+
descomp = []
|
28 |
+
impuestos = []
|
29 |
+
tramo_anterior = 0
|
30 |
+
for tramo, descuento in tramos.items():
|
31 |
+
delta = min(sueldo_bruto, tramo) - tramo_anterior
|
32 |
+
if delta>0:
|
33 |
+
descomp.append(delta)
|
34 |
+
impuestos.append(int(delta*descuento))
|
35 |
+
tramo_anterior = tramo
|
36 |
+
return descomp, impuestos
|
37 |
+
|
38 |
+
def get_table(sueldo_bruto, tramos=TRAMOS):
|
39 |
+
"""
|
40 |
+
Tabla de Impuestos por tramo
|
41 |
+
"""
|
42 |
+
_tramos = [0]+list(tramos.keys())
|
43 |
+
tasas = tramos.values()
|
44 |
+
data = list(zip(_tramos[:-1], _tramos[1:], tasas, *descomponer_en_tramos(sueldo_bruto, tramos)))
|
45 |
+
df = pd.DataFrame(data=data, columns=["Desde", "Hasta", "Tasa", "Monto sujeto a impuesto", "Impuesto"])
|
46 |
+
return df
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|