Spaces:
Running
Running
tbdavid2019
commited on
Commit
·
4d43d0c
1
Parent(s):
f3dd761
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import yfinance as yf
|
4 |
+
from sklearn.preprocessing import MinMaxScaler
|
5 |
+
from keras.models import Sequential
|
6 |
+
from keras.layers import LSTM, Dense, Dropout
|
7 |
+
import gradio as gr
|
8 |
+
import datetime
|
9 |
+
|
10 |
+
# Function to fetch stock data
|
11 |
+
def get_stock_data(ticker, period):
|
12 |
+
data = yf.download(ticker, period=period)
|
13 |
+
return data
|
14 |
+
|
15 |
+
# Function to prepare the data for LSTM
|
16 |
+
def prepare_data(data, time_step=60):
|
17 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
18 |
+
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
|
19 |
+
|
20 |
+
X, y = [], []
|
21 |
+
for i in range(time_step, len(scaled_data)):
|
22 |
+
X.append(scaled_data[i-time_step:i, 0])
|
23 |
+
y.append(scaled_data[i, 0])
|
24 |
+
|
25 |
+
X, y = np.array(X), np.array(y)
|
26 |
+
X = np.reshape(X, (X.shape[0], X.shape[1], 1))
|
27 |
+
|
28 |
+
return X, y, scaler
|
29 |
+
|
30 |
+
# Function to build and train LSTM model
|
31 |
+
def train_lstm_model(X_train, y_train):
|
32 |
+
model = Sequential()
|
33 |
+
model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
|
34 |
+
model.add(Dropout(0.2))
|
35 |
+
model.add(LSTM(units=50, return_sequences=False))
|
36 |
+
model.add(Dropout(0.2))
|
37 |
+
model.add(Dense(units=1))
|
38 |
+
|
39 |
+
model.compile(optimizer='adam', loss='mean_squared_error')
|
40 |
+
model.fit(X_train, y_train, epochs=10, batch_size=32)
|
41 |
+
|
42 |
+
return model
|
43 |
+
|
44 |
+
# Function to predict stock prices
|
45 |
+
def predict_stock(model, data, scaler, time_step=60):
|
46 |
+
inputs = scaler.transform(data['Close'].values.reshape(-1, 1))
|
47 |
+
X_test = []
|
48 |
+
for i in range(time_step, len(inputs)):
|
49 |
+
X_test.append(inputs[i-time_step:i, 0])
|
50 |
+
X_test = np.array(X_test)
|
51 |
+
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
|
52 |
+
|
53 |
+
predicted_prices = model.predict(X_test)
|
54 |
+
predicted_prices = scaler.inverse_transform(predicted_prices)
|
55 |
+
|
56 |
+
return predicted_prices
|
57 |
+
|
58 |
+
# Function to fetch all Taiwan listed stocks
|
59 |
+
def get_all_taiwan_stocks():
|
60 |
+
# Here you should implement a method to get all Taiwan listed stock tickers
|
61 |
+
# This is a placeholder list of tickers for demonstration purposes
|
62 |
+
return ["2330.TW", "2317.TW", "2303.TW", "2412.TW", "2454.TW"]
|
63 |
+
|
64 |
+
# Function to get top 10 potential stocks
|
65 |
+
def get_top_10_potential_stocks(period):
|
66 |
+
stock_list = get_all_taiwan_stocks()
|
67 |
+
stock_predictions = []
|
68 |
+
|
69 |
+
for ticker in stock_list:
|
70 |
+
data = get_stock_data(ticker, period)
|
71 |
+
if data.empty:
|
72 |
+
continue
|
73 |
+
|
74 |
+
# Prepare data
|
75 |
+
X_train, y_train, scaler = prepare_data(data)
|
76 |
+
|
77 |
+
# Train model
|
78 |
+
model = train_lstm_model(X_train, y_train)
|
79 |
+
|
80 |
+
# Predict future prices
|
81 |
+
predicted_prices = predict_stock(model, data, scaler)
|
82 |
+
|
83 |
+
# Calculate the potential (e.g., last predicted price vs last actual price)
|
84 |
+
potential = (predicted_prices[-1] - data['Close'].values[-1]) / data['Close'].values[-1]
|
85 |
+
stock_predictions.append((ticker, potential, data['Close'].values[-1], predicted_prices[-1][0]))
|
86 |
+
|
87 |
+
# Sort by potential and get top 10
|
88 |
+
top_10_stocks = sorted(stock_predictions, key=lambda x: x[1], reverse=True)[:10]
|
89 |
+
return top_10_stocks
|
90 |
+
|
91 |
+
# Gradio interface function
|
92 |
+
def stock_prediction_app(period):
|
93 |
+
# Get top 10 potential stocks
|
94 |
+
top_10_stocks = get_top_10_potential_stocks(period)
|
95 |
+
|
96 |
+
# Create a dataframe for display
|
97 |
+
df = pd.DataFrame(top_10_stocks, columns=["股票代號", "潛力 (百分比)", "現價", "預測價格"])
|
98 |
+
|
99 |
+
return df
|
100 |
+
|
101 |
+
# Define Gradio interface
|
102 |
+
inputs = [
|
103 |
+
gr.inputs.Dropdown(choices=["1mo", "3mo", "6mo", "9mo", "1yr"], label="時間範圍")
|
104 |
+
]
|
105 |
+
outputs = gr.outputs.Dataframe(label="潛力股推薦結果")
|
106 |
+
|
107 |
+
gr.Interface(fn=stock_prediction_app, inputs=inputs, outputs=outputs, title="台股潛力股推薦系統 - LSTM模型")\
|
108 |
+
.launch()
|