Spaces:
Sleeping
Sleeping
Commit
Β·
15fa2e5
1
Parent(s):
a6c748c
updated
Browse files- app.py +108 -23
- requirements.txt +9 -8
- src/chatbot.py +16 -35
- src/model_loader.py +31 -13
app.py
CHANGED
|
@@ -1,17 +1,39 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from datetime import datetime
|
| 3 |
-
from
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
from src.conversation import ConversationMemory
|
| 6 |
from src.chatbot import LocalChatbot
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
#
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
memory = ConversationMemory(max_len=60)
|
| 14 |
-
bot = LocalChatbot(llm, memory)
|
| 15 |
|
| 16 |
INTENT_TEMPLATES = {
|
| 17 |
"math": "You are a math solver. Solve step-by-step only.",
|
|
@@ -20,19 +42,20 @@ INTENT_TEMPLATES = {
|
|
| 20 |
"exam": "Prepare concise exam-focused notes and important questions."
|
| 21 |
}
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
def now_ts():
|
| 24 |
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 25 |
|
| 26 |
-
|
| 27 |
-
# Chat Function
|
| 28 |
-
# ----------------------------
|
| 29 |
-
def generate_reply(user_msg, history=None):
|
| 30 |
if history is None:
|
| 31 |
history = []
|
| 32 |
|
| 33 |
if not user_msg.strip():
|
| 34 |
return history
|
| 35 |
|
|
|
|
| 36 |
intent = None
|
| 37 |
low = user_msg.lower()
|
| 38 |
for key in INTENT_TEMPLATES:
|
|
@@ -42,8 +65,12 @@ def generate_reply(user_msg, history=None):
|
|
| 42 |
break
|
| 43 |
|
| 44 |
system_prefix = INTENT_TEMPLATES.get(intent, None)
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
| 47 |
bot_reply = bot.ask(prompt)
|
| 48 |
ts = now_ts()
|
| 49 |
bot_reply_ts = f"{bot_reply}\n\nπ {ts}"
|
|
@@ -58,24 +85,82 @@ def generate_reply(user_msg, history=None):
|
|
| 58 |
|
| 59 |
return history
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
#
|
| 63 |
-
#
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
send_btn = gr.Button("Send")
|
| 70 |
-
new_chat_btn = gr.Button("β New Chat")
|
| 71 |
|
|
|
|
| 72 |
send_btn.click(generate_reply, inputs=[msg, chatbot], outputs=[chatbot])
|
| 73 |
msg.submit(generate_reply, inputs=[msg, chatbot], outputs=[chatbot])
|
| 74 |
|
| 75 |
def new_chat():
|
| 76 |
memory.clear()
|
| 77 |
return []
|
|
|
|
| 78 |
new_chat_btn.click(new_chat, outputs=[chatbot])
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
if __name__ == "__main__":
|
| 81 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py β Updated version for Hugging Face token & CPU
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import tempfile
|
| 5 |
+
import textwrap
|
| 6 |
from datetime import datetime
|
| 7 |
+
from typing import List, Dict, Any, Optional
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
+
|
| 12 |
from src.conversation import ConversationMemory
|
| 13 |
from src.chatbot import LocalChatbot
|
| 14 |
|
| 15 |
+
# ----------------------
|
| 16 |
+
# HUGGING FACE SETTINGS
|
| 17 |
+
# ----------------------
|
| 18 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # your Hugging Face token stored as secret variable
|
| 19 |
+
MODEL_PATH = "RedHatAI/gemma-2-2b-it-quantized.w4a16" # public or private model
|
| 20 |
+
|
| 21 |
+
# ----------------------
|
| 22 |
+
# LOAD MODEL + TOKENIZER
|
| 23 |
+
# ----------------------
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True, use_auth_token=HF_TOKEN)
|
| 25 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
MODEL_PATH,
|
| 27 |
+
device_map="cpu", # CPU for multiple users
|
| 28 |
+
torch_dtype="auto",
|
| 29 |
+
use_auth_token=HF_TOKEN
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# ----------------------
|
| 33 |
+
# MEMORY + CHATBOT
|
| 34 |
+
# ----------------------
|
| 35 |
memory = ConversationMemory(max_len=60)
|
| 36 |
+
bot = LocalChatbot(llm, memory, tokenizer=tokenizer)
|
| 37 |
|
| 38 |
INTENT_TEMPLATES = {
|
| 39 |
"math": "You are a math solver. Solve step-by-step only.",
|
|
|
|
| 42 |
"exam": "Prepare concise exam-focused notes and important questions."
|
| 43 |
}
|
| 44 |
|
| 45 |
+
# ----------------------
|
| 46 |
+
# HELPER FUNCTIONS
|
| 47 |
+
# ----------------------
|
| 48 |
def now_ts():
|
| 49 |
return datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 50 |
|
| 51 |
+
def generate_reply(user_msg: str, history: Optional[List[Dict[str, Any]]]):
|
|
|
|
|
|
|
|
|
|
| 52 |
if history is None:
|
| 53 |
history = []
|
| 54 |
|
| 55 |
if not user_msg.strip():
|
| 56 |
return history
|
| 57 |
|
| 58 |
+
# Detect intent
|
| 59 |
intent = None
|
| 60 |
low = user_msg.lower()
|
| 61 |
for key in INTENT_TEMPLATES:
|
|
|
|
| 65 |
break
|
| 66 |
|
| 67 |
system_prefix = INTENT_TEMPLATES.get(intent, None)
|
| 68 |
+
if system_prefix:
|
| 69 |
+
prompt = f"{system_prefix}\nUser: {user_msg}"
|
| 70 |
+
else:
|
| 71 |
+
prompt = f"User: {user_msg}"
|
| 72 |
|
| 73 |
+
# Generate reply using LocalChatbot
|
| 74 |
bot_reply = bot.ask(prompt)
|
| 75 |
ts = now_ts()
|
| 76 |
bot_reply_ts = f"{bot_reply}\n\nπ {ts}"
|
|
|
|
| 85 |
|
| 86 |
return history
|
| 87 |
|
| 88 |
+
# ----------------------
|
| 89 |
+
# EXPORT TXT/PDF
|
| 90 |
+
# ----------------------
|
| 91 |
+
def export_chat_files(history: List[Dict[str, Any]]) -> Dict[str, Optional[str]]:
|
| 92 |
+
tmpdir = tempfile.gettempdir()
|
| 93 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 94 |
+
txt_path = os.path.join(tmpdir, f"chat_history_{timestamp}.txt")
|
| 95 |
+
|
| 96 |
+
with open(txt_path, "w", encoding="utf-8") as f:
|
| 97 |
+
for msg in history:
|
| 98 |
+
content = msg.get("content", "")
|
| 99 |
+
lines = content.splitlines()
|
| 100 |
+
lines = [l.replace("USER:", "").replace("ASSISTANT:", "").strip() for l in lines]
|
| 101 |
+
f.write("\n".join(lines).strip() + "\n")
|
| 102 |
+
f.write("-" * 60 + "\n")
|
| 103 |
+
|
| 104 |
+
pdf_path = None
|
| 105 |
+
try:
|
| 106 |
+
from reportlab.lib.pagesizes import A4
|
| 107 |
+
from reportlab.pdfgen import canvas
|
| 108 |
+
pdf_path = os.path.join(tmpdir, f"chat_history_{timestamp}.pdf")
|
| 109 |
+
c = canvas.Canvas(pdf_path, pagesize=A4)
|
| 110 |
+
width, height = A4
|
| 111 |
+
margin = 40
|
| 112 |
+
textobject = c.beginText(margin, height - margin)
|
| 113 |
+
textobject.setFont("Helvetica", 10)
|
| 114 |
+
with open(txt_path, "r", encoding="utf-8") as fh:
|
| 115 |
+
for line in fh:
|
| 116 |
+
for wrapped in textwrap.wrap(line.rstrip(), 100):
|
| 117 |
+
textobject.textLine(wrapped)
|
| 118 |
+
c.drawText(textobject)
|
| 119 |
+
c.showPage()
|
| 120 |
+
c.save()
|
| 121 |
+
except:
|
| 122 |
+
pdf_path = None
|
| 123 |
+
|
| 124 |
+
return {"txt": txt_path, "pdf": pdf_path}
|
| 125 |
+
|
| 126 |
+
# ----------------------
|
| 127 |
+
# UI
|
| 128 |
+
# ----------------------
|
| 129 |
+
with gr.Blocks(title="Tayyab β Chatbot (API)") as demo:
|
| 130 |
+
|
| 131 |
+
with gr.Row():
|
| 132 |
+
with gr.Column(scale=1, min_width=220):
|
| 133 |
+
gr.Markdown("### β‘ Tools & Export")
|
| 134 |
+
new_chat_btn = gr.Button("β New Chat")
|
| 135 |
+
export_btn = gr.Button("π₯ Export TXT/PDF")
|
| 136 |
+
|
| 137 |
+
with gr.Column(scale=3):
|
| 138 |
+
gr.Markdown("<h3>Smart Learning Assistant - Tayyab</h3>")
|
| 139 |
+
chatbot = gr.Chatbot(height=480, type="messages")
|
| 140 |
+
msg = gr.Textbox(placeholder="Type a message", show_label=False, lines=3)
|
| 141 |
+
send_btn = gr.Button("Send")
|
| 142 |
|
| 143 |
+
file_txt = gr.File(visible=False)
|
| 144 |
+
file_pdf = gr.File(visible=False)
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
# Chat actions
|
| 147 |
send_btn.click(generate_reply, inputs=[msg, chatbot], outputs=[chatbot])
|
| 148 |
msg.submit(generate_reply, inputs=[msg, chatbot], outputs=[chatbot])
|
| 149 |
|
| 150 |
def new_chat():
|
| 151 |
memory.clear()
|
| 152 |
return []
|
| 153 |
+
|
| 154 |
new_chat_btn.click(new_chat, outputs=[chatbot])
|
| 155 |
|
| 156 |
+
def export_handler(history):
|
| 157 |
+
files = export_chat_files(history or [])
|
| 158 |
+
return (
|
| 159 |
+
gr.update(value=files.get("txt"), visible=True),
|
| 160 |
+
gr.update(value=files.get("pdf"), visible=bool(files.get("pdf")))
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
export_btn.click(export_handler, inputs=[chatbot], outputs=[file_txt, file_pdf])
|
| 164 |
+
|
| 165 |
if __name__ == "__main__":
|
| 166 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
gradio==3.42
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
numpy
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
| 1 |
gradio==3.42
|
| 2 |
+
transformers==4.43.0
|
| 3 |
+
torch==2.2.0
|
| 4 |
+
numpy==1.25.2
|
| 5 |
+
reportlab==3.5.67
|
| 6 |
+
python-dotenv==1.0.0
|
| 7 |
+
pillow==10.0.0
|
| 8 |
+
pdfplumber==0.9.0
|
| 9 |
+
opencv-python==4.8.1.78
|
| 10 |
+
requests==2.31.0
|
src/chatbot.py
CHANGED
|
@@ -1,31 +1,26 @@
|
|
| 1 |
-
# src/chatbot.py
|
| 2 |
from typing import Dict, Any, Optional
|
| 3 |
from src.intent import detect_intent
|
| 4 |
from src.templates import TEMPLATES
|
| 5 |
-
import time
|
| 6 |
|
| 7 |
-
# Default generation args (tweakable)
|
| 8 |
DEFAULT_GEN_ARGS = {
|
| 9 |
"max_tokens": 300,
|
| 10 |
"temperature": 0.7,
|
| 11 |
-
"top_p": 0.95
|
| 12 |
-
# "stop": ["User:", "Assistant:"] # enable if your llama binding supports stop tokens
|
| 13 |
}
|
| 14 |
|
| 15 |
MSG_SEPARATOR = "\n"
|
| 16 |
|
| 17 |
class LocalChatbot:
|
| 18 |
-
def __init__(self, llm, memory, default_template: Optional[str] = "general"):
|
| 19 |
self.llm = llm
|
| 20 |
self.memory = memory
|
|
|
|
| 21 |
self.default_template = default_template
|
| 22 |
|
| 23 |
def _build_system_prompt(self, intent: str) -> str:
|
| 24 |
-
# get template for intent
|
| 25 |
return TEMPLATES.get(intent, TEMPLATES.get(self.default_template, TEMPLATES["general"]))
|
| 26 |
|
| 27 |
def _build_prompt(self, user_message: str, intent: str, max_pairs: int = 12) -> str:
|
| 28 |
-
# Trim memory to recent pairs before building prompt
|
| 29 |
try:
|
| 30 |
self.memory.trim_to_recent_pairs(max_pairs)
|
| 31 |
except Exception:
|
|
@@ -40,50 +35,36 @@ class LocalChatbot:
|
|
| 40 |
f"User: {user_message}",
|
| 41 |
"Assistant:"
|
| 42 |
]
|
| 43 |
-
|
| 44 |
-
return MSG_SEPARATOR.join([p for p in parts if p is not None and p != ""])
|
| 45 |
|
| 46 |
def ask(self, user_message: str, gen_args: Optional[Dict[str, Any]] = None) -> str:
|
| 47 |
-
if not user_message
|
| 48 |
return "Please enter a message."
|
| 49 |
|
| 50 |
-
# Detect intent
|
| 51 |
intent = detect_intent(user_message)
|
|
|
|
| 52 |
|
| 53 |
-
# Build prompt
|
| 54 |
-
prompt = self._build_prompt(user_message, intent, max_pairs=12)
|
| 55 |
-
|
| 56 |
-
# Merge generation args
|
| 57 |
gen = DEFAULT_GEN_ARGS.copy()
|
| 58 |
if gen_args:
|
| 59 |
gen.update(gen_args)
|
| 60 |
|
| 61 |
-
# Attempt to call the LLM (defensive: handle different API variants)
|
| 62 |
-
try:
|
| 63 |
-
output = self.llm(prompt, **gen)
|
| 64 |
-
except TypeError:
|
| 65 |
-
# fallback mapping: map max_tokens -> max_new_tokens
|
| 66 |
-
alt_gen = gen.copy()
|
| 67 |
-
if "max_tokens" in alt_gen:
|
| 68 |
-
alt_gen["max_new_tokens"] = alt_gen.pop("max_tokens")
|
| 69 |
-
output = self.llm(prompt, **alt_gen)
|
| 70 |
-
|
| 71 |
-
# Parse the output robustly
|
| 72 |
-
bot_reply = ""
|
| 73 |
try:
|
| 74 |
-
if
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
| 78 |
else:
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
except Exception:
|
| 81 |
-
bot_reply = ""
|
| 82 |
|
| 83 |
if not bot_reply:
|
| 84 |
bot_reply = "Sorry β I couldn't generate a response. Please try again."
|
| 85 |
|
| 86 |
-
# Add to memory
|
| 87 |
try:
|
| 88 |
self.memory.add(user_message, bot_reply)
|
| 89 |
except Exception:
|
|
|
|
|
|
|
| 1 |
from typing import Dict, Any, Optional
|
| 2 |
from src.intent import detect_intent
|
| 3 |
from src.templates import TEMPLATES
|
|
|
|
| 4 |
|
|
|
|
| 5 |
DEFAULT_GEN_ARGS = {
|
| 6 |
"max_tokens": 300,
|
| 7 |
"temperature": 0.7,
|
| 8 |
+
"top_p": 0.95
|
|
|
|
| 9 |
}
|
| 10 |
|
| 11 |
MSG_SEPARATOR = "\n"
|
| 12 |
|
| 13 |
class LocalChatbot:
|
| 14 |
+
def __init__(self, llm, memory, tokenizer=None, default_template: Optional[str] = "general"):
|
| 15 |
self.llm = llm
|
| 16 |
self.memory = memory
|
| 17 |
+
self.tokenizer = tokenizer
|
| 18 |
self.default_template = default_template
|
| 19 |
|
| 20 |
def _build_system_prompt(self, intent: str) -> str:
|
|
|
|
| 21 |
return TEMPLATES.get(intent, TEMPLATES.get(self.default_template, TEMPLATES["general"]))
|
| 22 |
|
| 23 |
def _build_prompt(self, user_message: str, intent: str, max_pairs: int = 12) -> str:
|
|
|
|
| 24 |
try:
|
| 25 |
self.memory.trim_to_recent_pairs(max_pairs)
|
| 26 |
except Exception:
|
|
|
|
| 35 |
f"User: {user_message}",
|
| 36 |
"Assistant:"
|
| 37 |
]
|
| 38 |
+
return MSG_SEPARATOR.join([p for p in parts if p])
|
|
|
|
| 39 |
|
| 40 |
def ask(self, user_message: str, gen_args: Optional[Dict[str, Any]] = None) -> str:
|
| 41 |
+
if not user_message.strip():
|
| 42 |
return "Please enter a message."
|
| 43 |
|
|
|
|
| 44 |
intent = detect_intent(user_message)
|
| 45 |
+
prompt = self._build_prompt(user_message, intent)
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
gen = DEFAULT_GEN_ARGS.copy()
|
| 48 |
if gen_args:
|
| 49 |
gen.update(gen_args)
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
try:
|
| 52 |
+
if self.tokenizer:
|
| 53 |
+
# Transformers-style generation
|
| 54 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
| 55 |
+
outputs = self.llm.generate(**inputs, max_new_tokens=gen.get("max_tokens", 300))
|
| 56 |
+
bot_reply = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 57 |
else:
|
| 58 |
+
# Fallback: callable LLM
|
| 59 |
+
bot_reply = self.llm(prompt, **gen)
|
| 60 |
+
if isinstance(bot_reply, dict) and "choices" in bot_reply:
|
| 61 |
+
bot_reply = bot_reply["choices"][0].get("text", "").strip()
|
| 62 |
except Exception:
|
| 63 |
+
bot_reply = "Sorry β I couldn't generate a response. Please try again."
|
| 64 |
|
| 65 |
if not bot_reply:
|
| 66 |
bot_reply = "Sorry β I couldn't generate a response. Please try again."
|
| 67 |
|
|
|
|
| 68 |
try:
|
| 69 |
self.memory.add(user_message, bot_reply)
|
| 70 |
except Exception:
|
src/model_loader.py
CHANGED
|
@@ -1,17 +1,35 @@
|
|
| 1 |
-
from transformers import
|
|
|
|
| 2 |
|
| 3 |
-
def load_local_model(model_path: str, device: int = -1):
|
| 4 |
"""
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
"text-generation",
|
| 13 |
-
model=model,
|
| 14 |
-
tokenizer=tokenizer,
|
| 15 |
-
device=device # -1=CPU
|
| 16 |
-
)
|
| 17 |
-
return generator
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
| 2 |
+
import torch
|
| 3 |
|
| 4 |
+
def load_local_model(model_path: str, device: int = -1, token: str = None):
|
| 5 |
"""
|
| 6 |
+
Load a Hugging Face model (CPU by default) with optional token for private repos.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
model_path (str): Hugging Face repo ID or local path.
|
| 10 |
+
device (int): -1 for CPU, >=0 for GPU index.
|
| 11 |
+
token (str): HF token for private models.
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
model, tokenizer
|
| 15 |
"""
|
| 16 |
+
try:
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=token)
|
| 18 |
+
except Exception as e:
|
| 19 |
+
raise RuntimeError(f"Failed to load tokenizer: {e}")
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
config = AutoConfig.from_pretrained(model_path, use_auth_token=token)
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
model_path, config=config, use_auth_token=token
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Device mapping
|
| 28 |
+
if device >= 0 and torch.cuda.is_available():
|
| 29 |
+
model.to(f"cuda:{device}")
|
| 30 |
+
else:
|
| 31 |
+
model.to("cpu")
|
| 32 |
+
except Exception as e:
|
| 33 |
+
raise RuntimeError(f"Failed to load model: {e}")
|
| 34 |
|
| 35 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|