minigpt-final / api.py
tayhan
final
4c609ee
import argparse
import os
import random
from flask import Flask, redirect, url_for, request
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation import Chat, CONV_VISION
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
from PIL import Image
import requests
from huggingface_hub import login
login("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")
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
#
# curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -d "user_message=Response in json format with keys image_description, name, objects, object_name, object_color. " http://127.0.0.1:5000
# curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -d "user_message=describe the image" http://127.0.0.1:5000
#curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -d "user_message=Response in json format with keys image_description, name, objects, object_name, object_color. " http://127.0.0.1:5000
app = Flask(__name__)
app.config["DEBUG"] = False
@app.route('/', methods = ['POST', 'GET'])
def home():
user_message = request.form['user_message']
image = Image.open(requests.get(request.form['image'], stream=True).raw)
print(user_message)
chat_state = CONV_VISION.copy()
chat_state.messages = []
img_list = []
llm_message = chat.upload_img(image, chat_state, img_list)
chat.ask(user_message, chat_state)
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=5,
temperature=1,
max_new_tokens=600,
max_length=2000)[0]
return llm_message
app.run(host='0.0.0.0')