Spaces:
Running
Running
""" | |
Retrieval tasks find functionally relevant genes in a corpus of genes based on a query gene. | |
Typically corpus is derived from a different phylogenetic group than the query genes. | |
""" | |
import logging | |
from collections import defaultdict | |
from dgeb.evaluators import RetrievalEvaluator | |
from dgeb.modality import Modality | |
from dgeb.models import BioSeqTransformer | |
from dgeb.tasks import Dataset, Task, TaskMetadata, TaskResult | |
logger = logging.getLogger(__name__) | |
def run_retrieval_task(model: BioSeqTransformer, metadata: TaskMetadata) -> TaskResult: | |
"""Evaluate retrieval task. Utilizes the Retrieval evaluator.""" | |
if len(metadata.datasets) != 2: | |
raise ValueError("Retrieval tasks require 3 datasets: corpus, query and qrels.") | |
corpus_ds = metadata.datasets[0].load()["train"] | |
query_ds = metadata.datasets[0].load()["test"] | |
qrels = metadata.datasets[1].load() | |
corpus_embeds = model.encode(corpus_ds["Sequence"]) | |
query_embeds = model.encode(query_ds["Sequence"]) | |
qrels_dict = defaultdict(dict) | |
def qrels_dict_init(row): | |
qrels_dict[str(row["query_id"])][str(row["corpus_id"])] = int(row["fuzz_ratio"]) | |
# Populate `qrels_dict` from the dataset. | |
# See https://github.com/cvangysel/pytrec_eval for qrels format. | |
qrels.map(qrels_dict_init) | |
qrels = qrels_dict | |
layer_results = defaultdict(dict) | |
for i, layer in enumerate(model.layers): | |
evaluator = RetrievalEvaluator( | |
corpus_embeds[:, i], | |
query_embeds[:, i], | |
corpus_ds["Entry"], | |
query_ds["Entry"], | |
qrels, | |
) | |
layer_results["layers"][layer] = evaluator() | |
logger.info( | |
f"Layer: {layer}, Retrieval results: {layer_results['layers'][layer]}" | |
) | |
return TaskResult.from_dict(metadata, layer_results, model.metadata) | |
class ArchRetrieval(Task): | |
metadata = TaskMetadata( | |
id="arch_retrieval", | |
display_name="Arch Retrieval", | |
description="Retrieves bacterial proteins with similar swissprot annotations to a query archaeal protein", | |
type="retrieval", | |
modality=Modality.PROTEIN, | |
datasets=[ | |
Dataset( | |
path="tattabio/arch_retrieval", | |
revision="a19124322604a21b26b1b3c13a1bd0b8a63c9f7b", | |
), | |
Dataset( | |
path="tattabio/arch_retrieval_qrels", | |
revision="3f142f2f9a0995d56c6e77188c7251761450afcf", | |
), | |
], | |
primary_metric_id="map_at_5", | |
) | |
def run(self, model: BioSeqTransformer) -> TaskResult: | |
return run_retrieval_task(model, self.metadata) | |
class EukRetrieval(Task): | |
metadata = TaskMetadata( | |
id="euk_retrieval", | |
display_name="Euk Retrieval", | |
description="Retrieves bacterial proteins with similar swissprot annotations to a query eukaryotic protein", | |
type="retrieval", | |
modality=Modality.PROTEIN, | |
datasets=[ | |
Dataset( | |
path="tattabio/euk_retrieval", | |
revision="c93dc56665cedd19fbeaea9ace146f2474c895f0", | |
), | |
Dataset( | |
path="tattabio/euk_retrieval_qrels", | |
revision="a5aa01e9b9738074aba57fc07434e352c4c71e4b", | |
), | |
], | |
primary_metric_id="map_at_5", | |
) | |
def run(self, model: BioSeqTransformer) -> TaskResult: | |
return run_retrieval_task(model, self.metadata) | |