Spaces:
Running
Running
""" | |
Bigene mining tasks are analogous to bitext matching tasks, but for genes. | |
Cosine similarity is used to mine genes of related functions from different organisms. | |
""" | |
import logging | |
from collections import defaultdict | |
from dgeb.evaluators import BiGeneMiningEvaluator | |
from dgeb.modality import Modality | |
from dgeb.models import BioSeqTransformer | |
from dgeb.tasks import Dataset, Task, TaskMetadata, TaskResult | |
logger = logging.getLogger(__name__) | |
def run_bigene_mining_tasks( | |
model: BioSeqTransformer, metadata: TaskMetadata, top_k: int = 1 | |
) -> TaskResult: | |
"""Evaluate bigene mining task. Utilizes the BiGeneMiningEvaluator.""" | |
if len(metadata.datasets) != 1: | |
raise ValueError("BiGeneMining tasks require 1 dataset.") | |
ds = metadata.datasets[0].load()["train"] | |
layer_results = defaultdict(dict) | |
embeds1 = model.encode(ds["Seq1"]) | |
embeds2 = model.encode(ds["Seq2"]) | |
for i, layer in enumerate(model.layers): | |
evaluator = BiGeneMiningEvaluator(embeds1[:, i], embeds2[:, i], top_k=top_k) | |
layer_results["layers"][layer] = evaluator() | |
logger.info( | |
f"Layer: {layer}, {metadata.display_name} matching results: {layer_results['layers'][layer]}" | |
) | |
return TaskResult.from_dict(metadata, layer_results, model.metadata) | |
class BacArchBiGeneMining(Task): | |
metadata = TaskMetadata( | |
id="bacarch_bigene", | |
display_name="BacArch BiGene", | |
description="Evaluate on BacArch bigene matching task between bacterial (E.coli K-12) proteins and archaeal (Sulfolobus acidocaldarius DSM 639) proteins.", | |
type="bigene_mining", | |
modality=Modality.PROTEIN, | |
datasets=[ | |
Dataset( | |
path="tattabio/bac_arch_bigene", | |
revision="d5a65e44bae43a9ba9f2fdc03056dff9c12f6631", | |
) | |
], | |
primary_metric_id="f1", | |
) | |
def run(self, model: BioSeqTransformer) -> TaskResult: | |
return run_bigene_mining_tasks(model, self.metadata) | |
class ModACParalogyBiGeneMining(Task): | |
# ModAC Paralogy matching with top_k=1 is too strict (most models have accuracy < 0.1%) | |
# Instead use recall@50 as the main metric. | |
TOP_K = 50 | |
metadata = TaskMetadata( | |
id="modac_paralogy_bigene", | |
display_name="ModAC Paralogy BiGene", | |
description="Evaluate on paralogy bitext matching task between paralogous protein (ModA and ModC).", | |
type="bigene_mining", | |
modality=Modality.PROTEIN, | |
datasets=[ | |
Dataset( | |
path="tattabio/modac_paralogy_bigene", | |
revision="241ca6397856e3360da04422d54933035b1fab87", | |
) | |
], | |
primary_metric_id=f"recall_at_{TOP_K}", | |
) | |
def run(self, model: BioSeqTransformer) -> TaskResult: | |
return run_bigene_mining_tasks(model, self.metadata, top_k=self.TOP_K) | |