DGEB / leaderboard /app.py
Joshua Kravitz
feat: Launch
566f3c9
raw
history blame
10.5 kB
import importlib.util
import json
import math
from pathlib import Path
from typing import List
import gradio as gr
import pandas as pd
from pydantic import ValidationError, parse_obj_as
SIG_FIGS = 4
# HACK: very hacky way to import from parent directory, while avoiding needing all the deps of the parent package
modality_path = "../dgeb/modality.py"
spec = importlib.util.spec_from_file_location("modality", modality_path)
modality = importlib.util.module_from_spec(spec)
spec.loader.exec_module(modality)
Modality = modality.Modality
tasks_path = "../dgeb/tasks/tasks.py"
# Load the module
spec = importlib.util.spec_from_file_location("tasks", tasks_path)
tasks = importlib.util.module_from_spec(spec)
spec.loader.exec_module(tasks)
TaskResult = tasks.TaskResult
DGEBModel = tasks.DGEBModel
# Assuming the class definitions provided above are complete and imported here
def format_num_params(param: int) -> str:
# if the number of parameters is greater than 1 billion, display billion
million = 1_000_000
# billion = 1_000_000_000
# if param >= billion:
# num_billions = int(param / 1_000_000_000)
# return f"{num_billions:}B"
if param >= million:
num_millions = int(param / 1_000_000)
return f"{num_millions:}M"
else:
return f"{param:,}"
def load_json_files_from_directory(directory_path: Path) -> List[dict]:
"""
Recursively load all JSON files within the specified directory path.
:param directory_path: Path to the directory to search for JSON files.
:return: List of dictionaries loaded from JSON files.
"""
json_files_content = []
for json_file in directory_path.rglob("*.json"): # Recursively find all JSON files
try:
with open(json_file, "r", encoding="utf-8") as file:
json_content = json.load(file)
json_files_content.append(json_content)
except Exception as e:
print(f"Error loading {json_file}: {e}")
return json_files_content
def load_results() -> List[TaskResult]:
"""
Recursively load JSON files in ./submissions/** and return a list of TaskResult objects.
"""
submissions_path = Path("./submissions")
json_contents = load_json_files_from_directory(submissions_path)
task_results_objects = []
for content in json_contents:
try:
task_result = parse_obj_as(
TaskResult, content
) # Using Pydantic's parse_obj_as for creating TaskResult objects
task_results_objects.append(task_result)
except ValidationError as e:
print(f"Error parsing TaskResult object: {e}")
raise e
return task_results_objects
def task_results_to_dgeb_score(
model: DGEBModel, model_results: List[TaskResult]
) -> dict:
best_scores_per_task = []
modalities_seen = set()
for task_result in model_results:
modalities_seen.add(task_result.task.modality)
assert (
task_result.model.hf_name == model.hf_name
), f"Model names do not match, {task_result.model.hf_name} != {model.hf_name}"
primary_metric_id = task_result.task.primary_metric_id
scores = []
# Get the primary score for each layer.
for result in task_result.results:
for metric in result.metrics:
if metric.id == primary_metric_id:
scores.append(metric.value)
best_score = max(scores)
best_scores_per_task.append(best_score)
assert (
len(modalities_seen) == 1
), f"Multiple modalities found for model {model.hf_name}"
# Calculate the average of the best scores for each task.
assert len(best_scores_per_task) > 0, f"No tasks found for model {model.hf_name}"
dgeb_score = sum(best_scores_per_task) / len(best_scores_per_task)
return {
"Task Name": "DGEB Score",
"Task Category": "DGEB",
"Model": model.hf_name,
"Modality": list(modalities_seen)[0],
"Num. Parameters (millions)": format_num_params(model.num_params),
"Emb. Dimension": model.embed_dim,
"Score": dgeb_score,
}
def task_results_to_df(model_results: List[TaskResult]) -> pd.DataFrame:
# Initialize an empty list to hold all rows of data
data_rows = []
all_models = {}
for res in model_results:
task = res.task
model = res.model
all_models[model.hf_name] = model
print(f"Processing {task.display_name} for {model.hf_name}")
for layer in res.results:
total_layers = model.num_layers - 1
mid_layer = math.ceil(total_layers / 2)
if mid_layer == layer.layer_number:
layer.layer_display_name = "mid"
elif total_layers == layer.layer_number:
layer.layer_display_name = "last"
if layer.layer_display_name not in ["mid", "last"]:
# calculate if the layer is mid or last
print(
f"Layer {layer.layer_number} is not mid or last out of {total_layers}. Skipping"
)
continue
else:
# For each Metric in the Layer
# pivoting the data so that each metric is a row
metric_ids = []
primary_metric_label = f"{task.primary_metric_id} (primary metric)"
for metric in layer.metrics:
if task.primary_metric_id == metric.id:
metric_ids.append(primary_metric_label)
else:
metric_ids.append(metric.id)
metric_values = [metric.value for metric in layer.metrics]
zipped = zip(metric_ids, metric_values)
# sort primary metric id first
sorted_zip = sorted(
zipped,
key=lambda x: x[0] != primary_metric_label,
)
data_rows.append(
{
"Task Name": task.display_name,
"Task Category": task.type,
"Model": model.hf_name,
"Num. Parameters (millions)": format_num_params(
model.num_params
),
"Emb. Dimension": model.embed_dim,
"Modality": task.modality,
"Layer": layer.layer_display_name,
**dict(sorted_zip),
}
)
for model_name, model in all_models.items():
results_for_model = [
res for res in model_results if res.model.hf_name == model_name
]
assert len(results_for_model) > 0, f"No results found for model {model_name}"
dgeb_score_record = task_results_to_dgeb_score(model, results_for_model)
print(f'model {model.hf_name} dgeb score: {dgeb_score_record["Score"]}')
data_rows.append(dgeb_score_record)
print("Finished processing all results")
df = pd.DataFrame(data_rows)
return df
df = task_results_to_df(load_results())
image_path = "./DGEB_Figure.png"
with gr.Blocks() as demo:
gr.Label("Diverse Genomic Embedding Benchmark", show_label=False, scale=2)
gr.HTML(
f"<img src='file/{image_path}' alt='DGEB Figure' style='border-radius: 0.8rem; width: 50%; margin-left: auto; margin-right: auto; margin-top:12px;'>"
)
gr.HTML(
"""
<div style='width: 50%; margin-left: auto; margin-right: auto; padding-bottom: 8px;text-align: center;'>
DGEB Leaderboard. To submit, refer to the <a href="https://github.com/TattaBio/DGEB/blob/leaderboard/README.md" target="_blank" style="text-decoration: underline">DGEB GitHub repository</a> Refer to the <a href="https://example.com" target="_blank" style="text-decoration: underline">DGEB paper</a> for details on metrics, tasks, and models.
</div>
"""
)
unique_categories = df["Task Category"].unique()
# sort "DGEB" to the start
unique_categories = sorted(unique_categories, key=lambda x: x != "DGEB")
for category in unique_categories:
with gr.Tab(label=category):
unique_tasks_in_category = df[df["Task Category"] == category][
"Task Name"
].unique()
# sort "Overall" to the start
unique_tasks_in_category = sorted(
unique_tasks_in_category, key=lambda x: x != "Overall"
)
for task in unique_tasks_in_category:
with gr.Tab(label=task):
columns_to_hide = ["Task Name", "Task Category"]
# get rows where Task Name == task and Task Category == category
filtered_df = (
df[
(df["Task Name"] == task)
& (df["Task Category"] == category)
].drop(columns=columns_to_hide)
).dropna(axis=1, how="all") # drop all NaN columns for Overall tab
# round all values to 4 decimal places
rounded_df = filtered_df.round(SIG_FIGS)
# calculate ranking column
# if in Overview tab, rank by average metric value
if task == "Overall":
# rank by average col
rounded_df["Rank"] = filtered_df["Average"].rank(
ascending=False
)
else:
avoid_cols = [
"Model",
"Emb. Dimension",
"Num. Parameters (millions)",
"Modality",
"Layer",
]
rounded_df["Rank"] = (
rounded_df.drop(columns=avoid_cols, errors="ignore")
.sum(axis=1)
.rank(ascending=False)
)
# make Rank first column
cols = list(rounded_df.columns)
cols.insert(0, cols.pop(cols.index("Rank")))
rounded_df = rounded_df[cols]
# sort by rank
rounded_df = rounded_df.sort_values("Rank")
data_frame = gr.DataFrame(rounded_df)
demo.launch(allowed_paths=["."])