Spaces:
Running
Running
import importlib.util | |
import json | |
import math | |
from pathlib import Path | |
from typing import List | |
import gradio as gr | |
import pandas as pd | |
from pydantic import ValidationError, parse_obj_as | |
SIG_FIGS = 4 | |
# HACK: very hacky way to import from parent directory, while avoiding needing all the deps of the parent package | |
modality_path = "../dgeb/modality.py" | |
spec = importlib.util.spec_from_file_location("modality", modality_path) | |
modality = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(modality) | |
Modality = modality.Modality | |
tasks_path = "../dgeb/tasks/tasks.py" | |
# Load the module | |
spec = importlib.util.spec_from_file_location("tasks", tasks_path) | |
tasks = importlib.util.module_from_spec(spec) | |
spec.loader.exec_module(tasks) | |
TaskResult = tasks.TaskResult | |
DGEBModel = tasks.DGEBModel | |
# Assuming the class definitions provided above are complete and imported here | |
def format_num_params(param: int) -> str: | |
# if the number of parameters is greater than 1 billion, display billion | |
million = 1_000_000 | |
# billion = 1_000_000_000 | |
# if param >= billion: | |
# num_billions = int(param / 1_000_000_000) | |
# return f"{num_billions:}B" | |
if param >= million: | |
num_millions = int(param / 1_000_000) | |
return f"{num_millions:}M" | |
else: | |
return f"{param:,}" | |
def load_json_files_from_directory(directory_path: Path) -> List[dict]: | |
""" | |
Recursively load all JSON files within the specified directory path. | |
:param directory_path: Path to the directory to search for JSON files. | |
:return: List of dictionaries loaded from JSON files. | |
""" | |
json_files_content = [] | |
for json_file in directory_path.rglob("*.json"): # Recursively find all JSON files | |
try: | |
with open(json_file, "r", encoding="utf-8") as file: | |
json_content = json.load(file) | |
json_files_content.append(json_content) | |
except Exception as e: | |
print(f"Error loading {json_file}: {e}") | |
return json_files_content | |
def load_results() -> List[TaskResult]: | |
""" | |
Recursively load JSON files in ./submissions/** and return a list of TaskResult objects. | |
""" | |
submissions_path = Path("./submissions") | |
json_contents = load_json_files_from_directory(submissions_path) | |
task_results_objects = [] | |
for content in json_contents: | |
try: | |
task_result = parse_obj_as( | |
TaskResult, content | |
) # Using Pydantic's parse_obj_as for creating TaskResult objects | |
task_results_objects.append(task_result) | |
except ValidationError as e: | |
print(f"Error parsing TaskResult object: {e}") | |
raise e | |
return task_results_objects | |
def task_results_to_dgeb_score( | |
model: DGEBModel, model_results: List[TaskResult] | |
) -> dict: | |
best_scores_per_task = [] | |
modalities_seen = set() | |
for task_result in model_results: | |
modalities_seen.add(task_result.task.modality) | |
assert ( | |
task_result.model.hf_name == model.hf_name | |
), f"Model names do not match, {task_result.model.hf_name} != {model.hf_name}" | |
primary_metric_id = task_result.task.primary_metric_id | |
scores = [] | |
# Get the primary score for each layer. | |
for result in task_result.results: | |
for metric in result.metrics: | |
if metric.id == primary_metric_id: | |
scores.append(metric.value) | |
best_score = max(scores) | |
best_scores_per_task.append(best_score) | |
assert ( | |
len(modalities_seen) == 1 | |
), f"Multiple modalities found for model {model.hf_name}" | |
# Calculate the average of the best scores for each task. | |
assert len(best_scores_per_task) > 0, f"No tasks found for model {model.hf_name}" | |
dgeb_score = sum(best_scores_per_task) / len(best_scores_per_task) | |
return { | |
"Task Name": "DGEB Score", | |
"Task Category": "DGEB", | |
"Model": model.hf_name, | |
"Modality": list(modalities_seen)[0], | |
"Num. Parameters (millions)": format_num_params(model.num_params), | |
"Emb. Dimension": model.embed_dim, | |
"Score": dgeb_score, | |
} | |
def task_results_to_df(model_results: List[TaskResult]) -> pd.DataFrame: | |
# Initialize an empty list to hold all rows of data | |
data_rows = [] | |
all_models = {} | |
for res in model_results: | |
task = res.task | |
model = res.model | |
all_models[model.hf_name] = model | |
print(f"Processing {task.display_name} for {model.hf_name}") | |
for layer in res.results: | |
total_layers = model.num_layers - 1 | |
mid_layer = math.ceil(total_layers / 2) | |
if mid_layer == layer.layer_number: | |
layer.layer_display_name = "mid" | |
elif total_layers == layer.layer_number: | |
layer.layer_display_name = "last" | |
if layer.layer_display_name not in ["mid", "last"]: | |
# calculate if the layer is mid or last | |
print( | |
f"Layer {layer.layer_number} is not mid or last out of {total_layers}. Skipping" | |
) | |
continue | |
else: | |
# For each Metric in the Layer | |
# pivoting the data so that each metric is a row | |
metric_ids = [] | |
primary_metric_label = f"{task.primary_metric_id} (primary metric)" | |
for metric in layer.metrics: | |
if task.primary_metric_id == metric.id: | |
metric_ids.append(primary_metric_label) | |
else: | |
metric_ids.append(metric.id) | |
metric_values = [metric.value for metric in layer.metrics] | |
zipped = zip(metric_ids, metric_values) | |
# sort primary metric id first | |
sorted_zip = sorted( | |
zipped, | |
key=lambda x: x[0] != primary_metric_label, | |
) | |
data_rows.append( | |
{ | |
"Task Name": task.display_name, | |
"Task Category": task.type, | |
"Model": model.hf_name, | |
"Num. Parameters (millions)": format_num_params( | |
model.num_params | |
), | |
"Emb. Dimension": model.embed_dim, | |
"Modality": task.modality, | |
"Layer": layer.layer_display_name, | |
**dict(sorted_zip), | |
} | |
) | |
for model_name, model in all_models.items(): | |
results_for_model = [ | |
res for res in model_results if res.model.hf_name == model_name | |
] | |
assert len(results_for_model) > 0, f"No results found for model {model_name}" | |
dgeb_score_record = task_results_to_dgeb_score(model, results_for_model) | |
print(f'model {model.hf_name} dgeb score: {dgeb_score_record["Score"]}') | |
data_rows.append(dgeb_score_record) | |
print("Finished processing all results") | |
df = pd.DataFrame(data_rows) | |
return df | |
df = task_results_to_df(load_results()) | |
image_path = "./DGEB_Figure.png" | |
with gr.Blocks() as demo: | |
gr.Label("Diverse Genomic Embedding Benchmark", show_label=False, scale=2) | |
gr.HTML( | |
f"<img src='file/{image_path}' alt='DGEB Figure' style='border-radius: 0.8rem; width: 50%; margin-left: auto; margin-right: auto; margin-top:12px;'>" | |
) | |
gr.HTML( | |
""" | |
<div style='width: 50%; margin-left: auto; margin-right: auto; padding-bottom: 8px;text-align: center;'> | |
DGEB Leaderboard. To submit, refer to the <a href="https://github.com/TattaBio/DGEB/blob/leaderboard/README.md" target="_blank" style="text-decoration: underline">DGEB GitHub repository</a> Refer to the <a href="https://example.com" target="_blank" style="text-decoration: underline">DGEB paper</a> for details on metrics, tasks, and models. | |
</div> | |
""" | |
) | |
unique_categories = df["Task Category"].unique() | |
# sort "DGEB" to the start | |
unique_categories = sorted(unique_categories, key=lambda x: x != "DGEB") | |
for category in unique_categories: | |
with gr.Tab(label=category): | |
unique_tasks_in_category = df[df["Task Category"] == category][ | |
"Task Name" | |
].unique() | |
# sort "Overall" to the start | |
unique_tasks_in_category = sorted( | |
unique_tasks_in_category, key=lambda x: x != "Overall" | |
) | |
for task in unique_tasks_in_category: | |
with gr.Tab(label=task): | |
columns_to_hide = ["Task Name", "Task Category"] | |
# get rows where Task Name == task and Task Category == category | |
filtered_df = ( | |
df[ | |
(df["Task Name"] == task) | |
& (df["Task Category"] == category) | |
].drop(columns=columns_to_hide) | |
).dropna(axis=1, how="all") # drop all NaN columns for Overall tab | |
# round all values to 4 decimal places | |
rounded_df = filtered_df.round(SIG_FIGS) | |
# calculate ranking column | |
# if in Overview tab, rank by average metric value | |
if task == "Overall": | |
# rank by average col | |
rounded_df["Rank"] = filtered_df["Average"].rank( | |
ascending=False | |
) | |
else: | |
avoid_cols = [ | |
"Model", | |
"Emb. Dimension", | |
"Num. Parameters (millions)", | |
"Modality", | |
"Layer", | |
] | |
rounded_df["Rank"] = ( | |
rounded_df.drop(columns=avoid_cols, errors="ignore") | |
.sum(axis=1) | |
.rank(ascending=False) | |
) | |
# make Rank first column | |
cols = list(rounded_df.columns) | |
cols.insert(0, cols.pop(cols.index("Rank"))) | |
rounded_df = rounded_df[cols] | |
# sort by rank | |
rounded_df = rounded_df.sort_values("Rank") | |
data_frame = gr.DataFrame(rounded_df) | |
demo.launch(allowed_paths=["."]) | |