taskswithcode commited on
Commit
e56ce5e
1 Parent(s): 63b2c53

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +227 -0
app.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import streamlit as st
3
+ import torch
4
+ import string
5
+ from io import StringIO
6
+ import json
7
+ from transformers import BertTokenizer, BertForMaskedLM
8
+
9
+ MAX_INPUT = 1000
10
+
11
+ model_names = [
12
+ { "name":"SGPT-125M",
13
+ "model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
14
+ "mark":False,
15
+ "class":"SGPTModel"},
16
+
17
+
18
+ { "name":"SGPT-5.8B",
19
+ "model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
20
+ "fork_url":"https://github.com/taskswithcode/sgpt",
21
+ "orig_author_url":"https://github.com/Muennighoff",
22
+ "orig_author":"Niklas Muennighoff",
23
+ "sota_info": {
24
+ "task":"#1 in multiple information retrieval & search tasks",
25
+ "sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
26
+ },
27
+ "paper_url":"https://arxiv.org/abs/2202.08904v5",
28
+ "mark":True,
29
+ "class":"SGPTModel"},
30
+
31
+ { "name":"SGPT-1.3B",
32
+ "model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
33
+ "mark":False,
34
+ "class":"SGPTModel"},
35
+
36
+ { "name":"sentence-transformers/all-MiniLM-L6-v2",
37
+ "model":"sentence-transformers/all-MiniLM-L6-v2",
38
+ "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
39
+ "orig_author_url":"https://github.com/UKPLab",
40
+ "orig_author":"Ubiquitous Knowledge Processing Lab",
41
+ "sota_info": {
42
+ "task":"Nearly 4 million downloads from huggingface",
43
+ "sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
44
+ },
45
+ "paper_url":"https://arxiv.org/abs/1908.10084",
46
+ "mark":True,
47
+ "class":"HFModel"},
48
+
49
+ ]
50
+
51
+
52
+
53
+ example_file_names = {
54
+ "Machine learning terms (30+ phrases)": "tests/small_test.txt",
55
+ "Customer feedback mixed with noise (50+ sentences)":"tests/larger_test.txt"
56
+ }
57
+
58
+
59
+ def construct_model_info_for_display():
60
+ options_arr = []
61
+ markdown_str = "<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated</b></div>"
62
+ for node in model_names:
63
+ options_arr .append(node["name"])
64
+ if (node["mark"] == True):
65
+ markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Forked <a href=\'{node['fork_url']}\' target='_blank'>code</a><br/><br/></div>"
66
+ markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not saved</div>"
67
+ limit = "{:,}".format(MAX_INPUT)
68
+ markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">•&nbsp;User uploaded file has a maximum limit of {limit} sentences.</div>"
69
+ return options_arr,markdown_str
70
+
71
+
72
+ st.set_page_config(page_title='TWC - Compare state-of-the-art models for Sentence Similarity task', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
73
+ menu_items={
74
+ 'Get help': "mailto:taskswithcode@gmail.com",
75
+ 'Report a Bug': "mailto:taskswithcode@gmail.com",
76
+ 'About': 'This app was created by taskswithcode. http://taskswithcode.com'
77
+ })
78
+ col,pad = st.columns([85,15])
79
+
80
+ with col:
81
+ st.image("long_form_logo_with_icon.png")
82
+
83
+
84
+ @st.experimental_memo
85
+ def load_model(model_name):
86
+ try:
87
+ ret_model = None
88
+ for node in model_names:
89
+ if (model_name.startswith(node["name"])):
90
+ obj_class = globals()[node["class"]]
91
+ ret_model = obj_class()
92
+ ret_model.init_model(node["model"])
93
+ assert(ret_model is not None)
94
+ except Exception as e:
95
+ st.error("Unable to load model:" + model_name + " " + str(e))
96
+ pass
97
+ return ret_model
98
+
99
+
100
+ @st.experimental_memo
101
+ def cached_compute_similarity(sentences,_model,model_name,main_index):
102
+ texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
103
+ results = _model.output_results(None,texts,embeddings,main_index)
104
+ return results
105
+
106
+
107
+ def uncached_compute_similarity(sentences,_model,model_name,main_index):
108
+ with st.spinner('Computing vectors for sentences'):
109
+ texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
110
+ results = _model.output_results(None,texts,embeddings,main_index)
111
+ #st.success("Similarity computation complete")
112
+ return results
113
+
114
+ def run_test(model_name,sentences,display_area,main_index,user_uploaded):
115
+ display_area.text("Loading model:" + model_name)
116
+ model = load_model(model_name)
117
+ display_area.text("Model " + model_name + " load complete")
118
+ try:
119
+ if (user_uploaded):
120
+ results = uncached_compute_similarity(sentences,model,model_name,main_index)
121
+ else:
122
+ display_area.text("Computing vectors for sentences")
123
+ results = cached_compute_similarity(sentences,model,model_name,main_index)
124
+ display_area.text("Similarity computation complete")
125
+ return results
126
+
127
+ except Exception as e:
128
+ st.error("Some error occurred during prediction" + str(e))
129
+ st.stop()
130
+ return {}
131
+
132
+
133
+
134
+
135
+
136
+ def display_results(orig_sentences,main_index,results,response_info):
137
+ main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
138
+ main_sent += "<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by cosine distance. Closest(1) to furthest(-1) away from main sentence</div>"
139
+ main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>Main sentence:</b>&nbsp;&nbsp;{orig_sentences[main_index]}</div>"
140
+ body_sent = []
141
+ download_data = {}
142
+ for key in results:
143
+ index = orig_sentences.index(key) + 1
144
+ body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}]&nbsp;{key}&nbsp;&nbsp;&nbsp;<b>{results[key]:.2f}</b></div>")
145
+ download_data[key] = f"{results[key]:.2f}"
146
+ main_sent = main_sent + "\n" + '\n'.join(body_sent)
147
+ st.markdown(main_sent,unsafe_allow_html=True)
148
+ st.session_state["download_ready"] = json.dumps(download_data,indent=4)
149
+
150
+
151
+ def init_session():
152
+ st.session_state["download_ready"] = None
153
+ st.session_state["model_name"] = "ss_test"
154
+ st.session_state["main_index"] = 1
155
+ st.session_state["file_name"] = "default"
156
+
157
+ def main():
158
+ init_session()
159
+ st.markdown("<h4 style='text-align: center;'>Compare state-of-the-art models for Sentence Similarity task</h4>", unsafe_allow_html=True)
160
+
161
+
162
+ try:
163
+
164
+
165
+ with st.form('twc_form'):
166
+
167
+ uploaded_file = st.file_uploader("Step 1. Upload text file(one sentence in a line) or choose an example text file below.", type=".txt")
168
+
169
+ selected_file_index = st.selectbox(label='Example files ',
170
+ options = list(dict.keys(example_file_names)), index=0, key = "twc_file")
171
+ st.write("")
172
+ options_arr,markdown_str = construct_model_info_for_display()
173
+ selected_model = st.selectbox(label='Step 2. Select Model',
174
+ options = options_arr, index=0, key = "twc_model")
175
+ st.write("")
176
+ main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence:',value=1,min_value = 1)
177
+ st.write("")
178
+ submit_button = st.form_submit_button('Run')
179
+
180
+
181
+ input_status_area = st.empty()
182
+ display_area = st.empty()
183
+ if submit_button:
184
+ start = time.time()
185
+ if uploaded_file is not None:
186
+ st.session_state["file_name"] = uploaded_file.name
187
+ sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
188
+ else:
189
+ st.session_state["file_name"] = example_file_names[selected_file_index]
190
+ sentences = open(example_file_names[selected_file_index]).read()
191
+ sentences = sentences.split("\n")[:-1]
192
+ if (len(sentences) < main_index):
193
+ main_index = len(sentences)
194
+ st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index))
195
+ if (len(sentences) > MAX_INPUT):
196
+ st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
197
+ sentences = sentences[:MAX_INPUT]
198
+ st.session_state["model_name"] = selected_model
199
+ st.session_state["main_index"] = main_index
200
+ results = run_test(selected_model,sentences,display_area,main_index - 1,(uploaded_file is not None))
201
+ display_area.empty()
202
+ with display_area.container():
203
+ response_info = f"Response time - {time.time() - start:.2f} secs for {len(sentences)} sentences"
204
+ display_results(sentences,main_index - 1,results,response_info)
205
+ #st.json(results)
206
+ st.download_button(
207
+ label="Download results as json",
208
+ data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
209
+ disabled = False if st.session_state["download_ready"] != None else True,
210
+ file_name= (st.session_state["model_name"] + "_" + str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
211
+ mime='text/json',
212
+ key ="download"
213
+ )
214
+
215
+
216
+
217
+ except Exception as e:
218
+ st.error("Some error occurred during loading" + str(e))
219
+ st.stop()
220
+
221
+ st.markdown(markdown_str, unsafe_allow_html=True)
222
+
223
+
224
+
225
+ if __name__ == "__main__":
226
+ main()
227
+