Spaces:
Runtime error
Runtime error
import time | |
import sys | |
import streamlit as st | |
import string | |
from io import StringIO | |
import pdb | |
import json | |
from twc_embeddings import HFModel,SimCSEModel,SGPTModel | |
import torch | |
MAX_INPUT = 100 | |
SEM_SIMILARITY="1" | |
DOC_RETRIEVAL="2" | |
CLUSTERING="3" | |
use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"} | |
from transformers import BertTokenizer, BertForMaskedLM | |
view_count_file = "view_count.txt" | |
def get_views(): | |
ret_val = 0 | |
if ("view_count" not in st.session_state): | |
try: | |
data = int(open(view_count_file).read().strip("\n")) | |
except: | |
data = 0 | |
data += 1 | |
ret_val = data | |
st.session_state["view_count"] = data | |
with open(view_count_file,"w") as fp: | |
fp.write(str(data)) | |
else: | |
ret_val = st.session_state["view_count"] | |
return "{:,}".format(ret_val) | |
def construct_model_info_for_display(model_names): | |
options_arr = [] | |
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b></div>" | |
for node in model_names: | |
options_arr .append(node["name"]) | |
if (node["mark"] == "True"): | |
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"> • Model: <a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/> Code released by: <a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/> Model info: <a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>" | |
if ("Note" in node): | |
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\"> {node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>" | |
markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>" | |
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>• Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>" | |
limit = "{:,}".format(MAX_INPUT) | |
markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">• User uploaded file has a maximum limit of {limit} sentences.</div>" | |
return options_arr,markdown_str | |
st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for tasks using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto', | |
menu_items={ | |
'About': 'This app was created by taskswithcode. http://taskswithcode.com' | |
}) | |
col,pad = st.columns([85,15]) | |
with col: | |
st.image("long_form_logo_with_icon.png") | |
def load_model(model_name,model_names): | |
try: | |
ret_model = None | |
for node in model_names: | |
if (model_name.startswith(node["name"])): | |
obj_class = globals()[node["class"]] | |
ret_model = obj_class() | |
ret_model.init_model(node["model"]) | |
assert(ret_model is not None) | |
except Exception as e: | |
st.error("Unable to load model:" + model_name + " " + str(e)) | |
pass | |
return ret_model | |
def cached_compute_similarity(sentences,_model,model_name,main_index): | |
texts,embeddings = _model.compute_embeddings(sentences,is_file=False) | |
results = _model.output_results(None,texts,embeddings,main_index) | |
return results | |
def uncached_compute_similarity(sentences,_model,model_name,main_index): | |
with st.spinner('Computing vectors for sentences'): | |
texts,embeddings = _model.compute_embeddings(sentences,is_file=False) | |
results = _model.output_results(None,texts,embeddings,main_index) | |
#st.success("Similarity computation complete") | |
return results | |
def get_model_info(model_names,model_name): | |
for node in model_names: | |
if (model_name == node["name"]): | |
return node | |
def run_test(model_names,model_name,sentences,display_area,main_index,user_uploaded): | |
display_area.text("Loading model:" + model_name) | |
model_info = get_model_info(model_names,model_name) | |
if ("Note" in model_info): | |
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})" | |
display_area.write(fail_link) | |
model = load_model(model_name,model_names) | |
display_area.text("Model " + model_name + " load complete") | |
try: | |
if (user_uploaded): | |
results = uncached_compute_similarity(sentences,model,model_name,main_index) | |
else: | |
display_area.text("Computing vectors for sentences") | |
results = cached_compute_similarity(sentences,model,model_name,main_index) | |
display_area.text("Similarity computation complete") | |
return results | |
except Exception as e: | |
st.error("Some error occurred during prediction" + str(e)) | |
st.stop() | |
return {} | |
def display_results(orig_sentences,main_index,results,response_info,app_mode): | |
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>" | |
score_text = "cosine_distance" if app_mode == "similarity" else "cosine_distance/score" | |
pivot_name = "main sentence" if app_mode == "similarity" else "query" | |
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>" | |
pivot_name = pivot_name[0].upper() + pivot_name[1:] | |
main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>{pivot_name}:</b> {orig_sentences[main_index]}</div>" | |
body_sent = [] | |
download_data = {} | |
first = True | |
for key in results: | |
if (app_mode == DOC_RETRIEVAL and first): | |
first = False | |
continue | |
index = orig_sentences.index(key) + 1 | |
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}] {key} <b>{results[key]:.2f}</b></div>") | |
download_data[key] = f"{results[key]:.2f}" | |
main_sent = main_sent + "\n" + '\n'.join(body_sent) | |
st.markdown(main_sent,unsafe_allow_html=True) | |
st.session_state["download_ready"] = json.dumps(download_data,indent=4) | |
def init_session(): | |
st.session_state["download_ready"] = None | |
st.session_state["model_name"] = "ss_test" | |
st.session_state["main_index"] = 1 | |
st.session_state["file_name"] = "default" | |
def app_main(app_mode,example_files,model_name_files): | |
init_session() | |
with open(example_files) as fp: | |
example_file_names = json.load(fp) | |
with open(model_name_files) as fp: | |
model_names = json.load(fp) | |
curr_use_case = use_case[app_mode].split(".")[0] | |
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for tasks using sentence embeddings</h5>", unsafe_allow_html=True) | |
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/> • {use_case['1']}<br/> • {use_case['2']}<br/> • {use_case['3']}<br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True) | |
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views: {get_views()}</div>", unsafe_allow_html=True) | |
try: | |
with st.form('twc_form'): | |
step1_line = "Step 1. Upload text file(one sentence in a line) or choose an example text file below" | |
if (app_mode == DOC_RETRIEVAL): | |
step1_line += ". The first line is treated as the query" | |
uploaded_file = st.file_uploader(step1_line, type=".txt") | |
selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})', | |
options = list(dict.keys(example_file_names)), index=0, key = "twc_file") | |
st.write("") | |
options_arr,markdown_str = construct_model_info_for_display(model_names) | |
selection_label = 'Step 2. Select Model' | |
selected_model = st.selectbox(label=selection_label, | |
options = options_arr, index=0, key = "twc_model") | |
st.write("") | |
if (app_mode == "similarity"): | |
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence',value=1,min_value = 1) | |
else: | |
main_index = 1 | |
st.write("") | |
submit_button = st.form_submit_button('Run') | |
input_status_area = st.empty() | |
display_area = st.empty() | |
if submit_button: | |
start = time.time() | |
if uploaded_file is not None: | |
st.session_state["file_name"] = uploaded_file.name | |
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read() | |
else: | |
st.session_state["file_name"] = example_file_names[selected_file_index]["name"] | |
sentences = open(example_file_names[selected_file_index]["name"]).read() | |
sentences = sentences.split("\n")[:-1] | |
if (len(sentences) < main_index): | |
main_index = len(sentences) | |
st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index)) | |
if (len(sentences) > MAX_INPUT): | |
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen") | |
sentences = sentences[:MAX_INPUT] | |
st.session_state["model_name"] = selected_model | |
st.session_state["main_index"] = main_index | |
results = run_test(model_names,selected_model,sentences,display_area,main_index - 1,(uploaded_file is not None)) | |
display_area.empty() | |
with display_area.container(): | |
device = 'GPU' if torch.cuda.is_available() else 'CPU' | |
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences" | |
display_results(sentences,main_index - 1,results,response_info,app_mode) | |
#st.json(results) | |
st.download_button( | |
label="Download results as json", | |
data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "", | |
disabled = False if st.session_state["download_ready"] != None else True, | |
file_name= (st.session_state["model_name"] + "_" + str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"), | |
mime='text/json', | |
key ="download" | |
) | |
except Exception as e: | |
st.error("Some error occurred during loading" + str(e)) | |
st.stop() | |
st.markdown(markdown_str, unsafe_allow_html=True) | |
if __name__ == "__main__": | |
#print("comand line input:",len(sys.argv),str(sys.argv)) | |
#app_main(sys.argv[1],sys.argv[2],sys.argv[3]) | |
app_main("1","sim_app_examples.json","sim_app_models.json") | |
#app_main("2","doc_app_examples.json","doc_app_models.json") | |