Spaces:
Build error
Build error
| import os | |
| from pyChatGPT import ChatGPT | |
| os.system("pip install -U gradio") | |
| import sys | |
| import gradio as gr | |
| os.system( | |
| "pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html" | |
| ) | |
| # clone and install Detic | |
| os.system( | |
| "git clone https://github.com/facebookresearch/Detic.git --recurse-submodules" | |
| ) | |
| os.chdir("Detic") | |
| # Install detectron2 | |
| import torch | |
| # Some basic setup: | |
| # Setup detectron2 logger | |
| import detectron2 | |
| from detectron2.utils.logger import setup_logger | |
| setup_logger() | |
| # import some common libraries | |
| import sys | |
| import numpy as np | |
| import os, json, cv2, random | |
| # import some common detectron2 utilities | |
| from detectron2 import model_zoo | |
| from detectron2.engine import DefaultPredictor | |
| from detectron2.config import get_cfg | |
| from detectron2.utils.visualizer import Visualizer | |
| from detectron2.data import MetadataCatalog, DatasetCatalog | |
| # Detic libraries | |
| sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/") | |
| sys.path.insert(0, "third_party/CenterNet2/") | |
| from centernet.config import add_centernet_config | |
| from detic.config import add_detic_config | |
| from detic.modeling.utils import reset_cls_test | |
| from PIL import Image | |
| # Build the detector and download our pretrained weights | |
| cfg = get_cfg() | |
| add_centernet_config(cfg) | |
| add_detic_config(cfg) | |
| cfg.MODEL.DEVICE = "cpu" | |
| cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") | |
| cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth" | |
| cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model | |
| cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand" | |
| cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = ( | |
| True # For better visualization purpose. Set to False for all classes. | |
| ) | |
| predictor = DefaultPredictor(cfg) | |
| # Setup the model's vocabulary using build-in datasets | |
| BUILDIN_CLASSIFIER = { | |
| "lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy", | |
| "objects365": "datasets/metadata/o365_clip_a+cnamefix.npy", | |
| "openimages": "datasets/metadata/oid_clip_a+cname.npy", | |
| "coco": "datasets/metadata/coco_clip_a+cname.npy", | |
| } | |
| BUILDIN_METADATA_PATH = { | |
| "lvis": "lvis_v1_val", | |
| "objects365": "objects365_v2_val", | |
| "openimages": "oid_val_expanded", | |
| "coco": "coco_2017_val", | |
| } | |
| vocabulary = "lvis" # change to 'lvis', 'objects365', 'openimages', or 'coco' | |
| metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary]) | |
| classifier = BUILDIN_CLASSIFIER[vocabulary] | |
| num_classes = len(metadata.thing_classes) | |
| reset_cls_test(predictor.model, classifier, num_classes) | |
| def inference(img,unique_only): | |
| im = cv2.imread(img) | |
| outputs = predictor(im) | |
| v = Visualizer(im[:, :, ::-1], metadata) | |
| out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
| detected_objects = [] | |
| object_list_str = [] | |
| box_locations = outputs["instances"].pred_boxes | |
| box_loc_screen = box_locations.tensor.cpu().numpy() | |
| unique_object_dict = {} | |
| for i, box_coord in enumerate(box_loc_screen): | |
| x0, y0, x1, y1 = box_coord | |
| width = x1 - x0 | |
| height = y1 - y0 | |
| predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]] | |
| detected_objects.append( | |
| { | |
| "prediction": predicted_label, | |
| "x": int(x0), | |
| "y": int(y0), | |
| "w": int(width), | |
| "h": int(height), | |
| } | |
| ) | |
| if ((not unique_only) or (unique_only and predicted_label not in unique_object_dict)): | |
| object_list_str.append( | |
| f"{predicted_label} - X:{int(x0)} Y: {int(y0)} Width: {int(width)} Height: {int(height)}" | |
| ) | |
| unique_object_dict[predicted_label] = 1 | |
| output_str = "Imagine you are a blind but intelligent image captioner who is only given the X,Y coordinates and width, height of each object in a scene with no specific attributes of the objects themselves. Create a description of the scene using the relative positions and sizes of objects\n" | |
| for line in object_list_str: | |
| output_str += line + "\n" | |
| return ( | |
| Image.fromarray(np.uint8(out.get_image())).convert("RGB"), | |
| output_str | |
| ) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<div style=\"font-size:22; color: #2f2f2f; text-align: center\"><b>Detic for ChatGPT</b></div> <i>") | |
| gr.Markdown("<div style=\"font-size:12; color: #6f6f6f; text-align: center\"><i>A duplicated tweak of <a href=\"https://huggingface.co/spaces/taesiri/DeticChatGPT\">taesiri's Dectic/ChatGPT demo</a></i>") | |
| gr.Markdown("Use Detic to detect objects in an image and then copy/paste output text into your ChatGPT playground.") | |
| with gr.Column(): | |
| inp = gr.Image(label="Input Image", type="filepath") | |
| chk = gr.Checkbox(label="Unique Objects only? (useful to reduce ChatGPT input to speed up its reponse and also eliminate timeouts") | |
| btn_detic = gr.Button("Run Detic for ChatGPT") | |
| with gr.Column(): | |
| outviz = gr.Image(label="Visualization", type="pil") | |
| output_desc = gr.Textbox(label="Description for using in ChatGPT", lines=5) | |
| # outputjson = gr.JSON(label="Detected Objects") | |
| btn_detic.click(fn=inference, inputs=[inp,chk], outputs=[outviz, output_desc]) | |
| demo.launch() | |