Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| """Command line interface.""" | |
| import argparse | |
| import contextlib | |
| import logging | |
| import sys | |
| from argparse import RawTextHelpFormatter | |
| from typing import Optional | |
| # pylint: disable=redefined-outer-name, unused-argument | |
| from TTS.utils.generic_utils import ConsoleFormatter, setup_logger | |
| logger = logging.getLogger(__name__) | |
| description = """ | |
| Synthesize speech on the command line. | |
| You can either use your trained model or choose a model from the provided list. | |
| - List provided models: | |
| ```sh | |
| tts --list_models | |
| ``` | |
| - Get model information. Use the names obtained from `--list_models`. | |
| ```sh | |
| tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" | |
| ``` | |
| For example: | |
| ```sh | |
| tts --model_info_by_name tts_models/tr/common-voice/glow-tts | |
| tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 | |
| ``` | |
| #### Single speaker models | |
| - Run TTS with the default model (`tts_models/en/ljspeech/tacotron2-DDC`): | |
| ```sh | |
| tts --text "Text for TTS" --out_path output/path/speech.wav | |
| ``` | |
| - Run TTS and pipe out the generated TTS wav file data: | |
| ```sh | |
| tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay | |
| ``` | |
| - Run a TTS model with its default vocoder model: | |
| ```sh | |
| tts --text "Text for TTS" \\ | |
| --model_name "<model_type>/<language>/<dataset>/<model_name>" \\ | |
| --out_path output/path/speech.wav | |
| ``` | |
| For example: | |
| ```sh | |
| tts --text "Text for TTS" \\ | |
| --model_name "tts_models/en/ljspeech/glow-tts" \\ | |
| --out_path output/path/speech.wav | |
| ``` | |
| - Run with specific TTS and vocoder models from the list. Note that not every vocoder is compatible with every TTS model. | |
| ```sh | |
| tts --text "Text for TTS" \\ | |
| --model_name "<model_type>/<language>/<dataset>/<model_name>" \\ | |
| --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" \\ | |
| --out_path output/path/speech.wav | |
| ``` | |
| For example: | |
| ```sh | |
| tts --text "Text for TTS" \\ | |
| --model_name "tts_models/en/ljspeech/glow-tts" \\ | |
| --vocoder_name "vocoder_models/en/ljspeech/univnet" \\ | |
| --out_path output/path/speech.wav | |
| ``` | |
| - Run your own TTS model (using Griffin-Lim Vocoder): | |
| ```sh | |
| tts --text "Text for TTS" \\ | |
| --model_path path/to/model.pth \\ | |
| --config_path path/to/config.json \\ | |
| --out_path output/path/speech.wav | |
| ``` | |
| - Run your own TTS and Vocoder models: | |
| ```sh | |
| tts --text "Text for TTS" \\ | |
| --model_path path/to/model.pth \\ | |
| --config_path path/to/config.json \\ | |
| --out_path output/path/speech.wav \\ | |
| --vocoder_path path/to/vocoder.pth \\ | |
| --vocoder_config_path path/to/vocoder_config.json | |
| ``` | |
| #### Multi-speaker models | |
| - List the available speakers and choose a `<speaker_id>` among them: | |
| ```sh | |
| tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs | |
| ``` | |
| - Run the multi-speaker TTS model with the target speaker ID: | |
| ```sh | |
| tts --text "Text for TTS." --out_path output/path/speech.wav \\ | |
| --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id> | |
| ``` | |
| - Run your own multi-speaker TTS model: | |
| ```sh | |
| tts --text "Text for TTS" --out_path output/path/speech.wav \\ | |
| --model_path path/to/model.pth --config_path path/to/config.json \\ | |
| --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id> | |
| ``` | |
| #### Voice conversion models | |
| ```sh | |
| tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" \\ | |
| --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav> | |
| ``` | |
| """ | |
| def parse_args(arg_list: Optional[list[str]]) -> argparse.Namespace: | |
| """Parse arguments.""" | |
| parser = argparse.ArgumentParser( | |
| description=description.replace(" ```\n", ""), | |
| formatter_class=RawTextHelpFormatter, | |
| ) | |
| parser.add_argument( | |
| "--list_models", | |
| action="store_true", | |
| help="list available pre-trained TTS and vocoder models.", | |
| ) | |
| parser.add_argument( | |
| "--model_info_by_idx", | |
| type=str, | |
| default=None, | |
| help="model info using query format: <model_type>/<model_query_idx>", | |
| ) | |
| parser.add_argument( | |
| "--model_info_by_name", | |
| type=str, | |
| default=None, | |
| help="model info using query format: <model_type>/<language>/<dataset>/<model_name>", | |
| ) | |
| parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") | |
| # Args for running pre-trained TTS models. | |
| parser.add_argument( | |
| "--model_name", | |
| type=str, | |
| default="tts_models/en/ljspeech/tacotron2-DDC", | |
| help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>", | |
| ) | |
| parser.add_argument( | |
| "--vocoder_name", | |
| type=str, | |
| default=None, | |
| help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>", | |
| ) | |
| # Args for running custom models | |
| parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") | |
| parser.add_argument( | |
| "--model_path", | |
| type=str, | |
| default=None, | |
| help="Path to model file.", | |
| ) | |
| parser.add_argument( | |
| "--out_path", | |
| type=str, | |
| default="tts_output.wav", | |
| help="Output wav file path.", | |
| ) | |
| parser.add_argument("--use_cuda", action="store_true", help="Run model on CUDA.") | |
| parser.add_argument("--device", type=str, help="Device to run model on.", default="cpu") | |
| parser.add_argument( | |
| "--vocoder_path", | |
| type=str, | |
| help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", | |
| default=None, | |
| ) | |
| parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) | |
| parser.add_argument( | |
| "--encoder_path", | |
| type=str, | |
| help="Path to speaker encoder model file.", | |
| default=None, | |
| ) | |
| parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) | |
| parser.add_argument( | |
| "--pipe_out", | |
| help="stdout the generated TTS wav file for shell pipe.", | |
| action="store_true", | |
| ) | |
| # args for multi-speaker synthesis | |
| parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) | |
| parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) | |
| parser.add_argument( | |
| "--speaker_idx", | |
| type=str, | |
| help="Target speaker ID for a multi-speaker TTS model.", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--language_idx", | |
| type=str, | |
| help="Target language ID for a multi-lingual TTS model.", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--speaker_wav", | |
| nargs="+", | |
| help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", | |
| default=None, | |
| ) | |
| parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) | |
| parser.add_argument( | |
| "--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None | |
| ) | |
| parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) | |
| parser.add_argument( | |
| "--list_speaker_idxs", | |
| help="List available speaker ids for the defined multi-speaker model.", | |
| action="store_true", | |
| ) | |
| parser.add_argument( | |
| "--list_language_idxs", | |
| help="List available language ids for the defined multi-lingual model.", | |
| action="store_true", | |
| ) | |
| # aux args | |
| parser.add_argument( | |
| "--reference_wav", | |
| type=str, | |
| help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--reference_speaker_idx", | |
| type=str, | |
| help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", | |
| default=None, | |
| ) | |
| parser.add_argument( | |
| "--progress_bar", | |
| action=argparse.BooleanOptionalAction, | |
| help="Show a progress bar for the model download.", | |
| default=True, | |
| ) | |
| # voice conversion args | |
| parser.add_argument( | |
| "--source_wav", | |
| type=str, | |
| default=None, | |
| help="Original audio file to convert in the voice of the target_wav", | |
| ) | |
| parser.add_argument( | |
| "--target_wav", | |
| type=str, | |
| default=None, | |
| help="Target audio file to convert in the voice of the source_wav", | |
| ) | |
| parser.add_argument( | |
| "--voice_dir", | |
| type=str, | |
| default=None, | |
| help="Voice dir for tortoise model", | |
| ) | |
| args = parser.parse_args(arg_list) | |
| # print the description if either text or list_models is not set | |
| check_args = [ | |
| args.text, | |
| args.list_models, | |
| args.list_speaker_idxs, | |
| args.list_language_idxs, | |
| args.reference_wav, | |
| args.model_info_by_idx, | |
| args.model_info_by_name, | |
| args.source_wav, | |
| args.target_wav, | |
| ] | |
| if not any(check_args): | |
| parser.parse_args(["-h"]) | |
| return args | |
| def main(arg_list: Optional[list[str]] = None) -> None: | |
| """Entry point for `tts` command line interface.""" | |
| args = parse_args(arg_list) | |
| stream = sys.stderr if args.pipe_out else sys.stdout | |
| setup_logger("TTS", level=logging.INFO, stream=stream, formatter=ConsoleFormatter()) | |
| pipe_out = sys.stdout if args.pipe_out else None | |
| with contextlib.redirect_stdout(None if args.pipe_out else sys.stdout): | |
| # Late-import to make things load faster | |
| from TTS.api import TTS | |
| from TTS.utils.manage import ModelManager | |
| # load model manager | |
| manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=args.progress_bar) | |
| tts_path = None | |
| tts_config_path = None | |
| speakers_file_path = None | |
| language_ids_file_path = None | |
| vocoder_path = None | |
| vocoder_config_path = None | |
| encoder_path = None | |
| encoder_config_path = None | |
| vc_path = None | |
| vc_config_path = None | |
| model_dir = None | |
| # 1) List pre-trained TTS models | |
| if args.list_models: | |
| manager.list_models() | |
| sys.exit(0) | |
| # 2) Info about pre-trained TTS models (without loading a model) | |
| if args.model_info_by_idx: | |
| model_query = args.model_info_by_idx | |
| manager.model_info_by_idx(model_query) | |
| sys.exit(0) | |
| if args.model_info_by_name: | |
| model_query_full_name = args.model_info_by_name | |
| manager.model_info_by_full_name(model_query_full_name) | |
| sys.exit(0) | |
| # 3) Load a model for further info or TTS/VC | |
| device = args.device | |
| if args.use_cuda: | |
| device = "cuda" | |
| # A local model will take precedence if specified via modeL_path | |
| model_name = args.model_name if args.model_path is None else None | |
| api = TTS( | |
| model_name=model_name, | |
| model_path=args.model_path, | |
| config_path=args.config_path, | |
| vocoder_name=args.vocoder_name, | |
| vocoder_path=args.vocoder_path, | |
| vocoder_config_path=args.vocoder_config_path, | |
| encoder_path=args.encoder_path, | |
| encoder_config_path=args.encoder_config_path, | |
| speakers_file_path=args.speakers_file_path, | |
| language_ids_file_path=args.language_ids_file_path, | |
| progress_bar=args.progress_bar, | |
| ).to(device) | |
| # query speaker ids of a multi-speaker model. | |
| if args.list_speaker_idxs: | |
| if not api.is_multi_speaker: | |
| logger.info("Model only has a single speaker.") | |
| sys.exit(0) | |
| logger.info( | |
| "Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." | |
| ) | |
| logger.info(api.speakers) | |
| sys.exit(0) | |
| # query langauge ids of a multi-lingual model. | |
| if args.list_language_idxs: | |
| if not api.is_multi_lingual: | |
| logger.info("Monolingual model.") | |
| sys.exit(0) | |
| logger.info( | |
| "Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." | |
| ) | |
| logger.info(api.languages) | |
| sys.exit(0) | |
| # check the arguments against a multi-speaker model. | |
| if api.is_multi_speaker and (not args.speaker_idx and not args.speaker_wav): | |
| logger.error( | |
| "Looks like you use a multi-speaker model. Define `--speaker_idx` to " | |
| "select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." | |
| ) | |
| sys.exit(1) | |
| # RUN THE SYNTHESIS | |
| if args.text: | |
| logger.info("Text: %s", args.text) | |
| if args.text is not None: | |
| api.tts_to_file( | |
| text=args.text, | |
| speaker=args.speaker_idx, | |
| language=args.language_idx, | |
| speaker_wav=args.speaker_wav, | |
| pipe_out=pipe_out, | |
| file_path=args.out_path, | |
| reference_wav=args.reference_wav, | |
| style_wav=args.capacitron_style_wav, | |
| style_text=args.capacitron_style_text, | |
| reference_speaker_name=args.reference_speaker_idx, | |
| voice_dir=args.voice_dir, | |
| ) | |
| logger.info("Saved TTS output to %s", args.out_path) | |
| elif args.source_wav is not None and args.target_wav is not None: | |
| api.voice_conversion_to_file( | |
| source_wav=args.source_wav, | |
| target_wav=args.target_wav, | |
| file_path=args.out_path, | |
| pipe_out=pipe_out, | |
| ) | |
| logger.info("Saved VC output to %s", args.out_path) | |
| sys.exit(0) | |
| if __name__ == "__main__": | |
| main() | |