taroii's picture
Update app.py
3b26721
import gradio as gr
import torch
from transformers import DetrForObjectDetection, DetrImageProcessor, AutoModel
import supervision as sv
from supervision.detection.annotate import BoxAnnotator
from supervision.utils.notebook import plot_image
import cv2
CONFIDENCE_TRESHOLD = 0.5
IOU_TRESHOLD = 0.8
og_model = 'facebook/detr-resnet-50'
image_processor = DetrImageProcessor.from_pretrained(og_model)
model = AutoModel.from_pretrained("taroii/notfinetuned-detr-50")
def predict(image_path):
image = cv2.imread(image_path)
with torch.no_grad():
# load image and predict
inputs = image_processor(images=image, return_tensors='pt')
outputs = model(**inputs)
# post-process
target_sizes = torch.tensor([image.shape[:2]])
results = image_processor.post_process_object_detection(
outputs=outputs,
threshold=CONFIDENCE_TRESHOLD,
target_sizes=target_sizes
)[0]
# annotate
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5)
labels = [f"{id2label[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections]
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels)
#return plot_image(frame, (16, 16))
return frame
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload X-Ray Image", type="filepath"),
outputs=gr.Image(),
title="Non-Fine-Tuned Model"
).launch()