Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import DetrForObjectDetection, DetrImageProcessor, AutoModel | |
import supervision as sv | |
from supervision.detection.annotate import BoxAnnotator | |
from supervision.utils.notebook import plot_image | |
import cv2 | |
CONFIDENCE_TRESHOLD = 0.5 | |
IOU_TRESHOLD = 0.8 | |
og_model = 'facebook/detr-resnet-50' | |
image_processor = DetrImageProcessor.from_pretrained(og_model) | |
model = AutoModel.from_pretrained("taroii/notfinetuned-detr-50") | |
def predict(image_path): | |
image = cv2.imread(image_path) | |
with torch.no_grad(): | |
# load image and predict | |
inputs = image_processor(images=image, return_tensors='pt') | |
outputs = model(**inputs) | |
# post-process | |
target_sizes = torch.tensor([image.shape[:2]]) | |
results = image_processor.post_process_object_detection( | |
outputs=outputs, | |
threshold=CONFIDENCE_TRESHOLD, | |
target_sizes=target_sizes | |
)[0] | |
# annotate | |
detections = sv.Detections.from_transformers(transformers_results=results).with_nms(threshold=0.5) | |
labels = [f"{id2label[class_id]} {confidence:.2f}" for _, confidence, class_id, _ in detections] | |
frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels) | |
#return plot_image(frame, (16, 16)) | |
return frame | |
gr.Interface( | |
predict, | |
inputs=gr.inputs.Image(label="Upload X-Ray Image", type="filepath"), | |
outputs=gr.Image(), | |
title="Non-Fine-Tuned Model" | |
).launch() |