Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,142 +2,134 @@ import gradio as gr
|
|
2 |
from sentence_transformers import SentenceTransformer, util
|
3 |
import openai
|
4 |
import os
|
|
|
5 |
|
6 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
7 |
|
8 |
-
# Initialize paths and model identifiers
|
9 |
-
filename = "output_topic_details.txt"
|
10 |
retrieval_model_name = 'output/sentence-transformer-finetuned/'
|
11 |
|
12 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
13 |
|
14 |
-
system_message =
|
15 |
-
|
|
|
|
|
|
|
16 |
messages = [{"role": "system", "content": system_message}]
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
retrieval_model = SentenceTransformer(retrieval_model_name)
|
21 |
-
print("Models loaded successfully.")
|
22 |
-
except Exception as e:
|
23 |
-
print(f"Failed to load models: {e}")
|
24 |
-
|
25 |
-
def load_and_preprocess_text(filename):
|
26 |
-
"""
|
27 |
-
Load and preprocess text from a file, removing empty lines and stripping whitespace.
|
28 |
-
"""
|
29 |
try:
|
30 |
with open(filename, 'r', encoding='utf-8') as file:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
print(f"Failed to load or preprocess text: {e}")
|
36 |
-
return []
|
37 |
-
|
38 |
-
segments = load_and_preprocess_text(filename)
|
39 |
-
|
40 |
-
def find_relevant_segment(user_query, segments):
|
41 |
-
"""
|
42 |
-
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
|
43 |
-
This version finds the best match based on the content of the query.
|
44 |
-
"""
|
45 |
-
try:
|
46 |
-
# Lowercase the query for better matching
|
47 |
-
lower_query = user_query.lower()
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# Return the most relevant segment
|
60 |
-
return segments[best_idx]
|
61 |
except Exception as e:
|
62 |
-
print(f"
|
63 |
-
return
|
64 |
|
65 |
-
|
66 |
-
"""
|
67 |
-
Generate a response emphasizing the bot's capability in suggesting a restaurant.
|
68 |
-
"""
|
69 |
-
try:
|
70 |
-
user_message = f"Here is a local restaurant based on your information: {relevant_segment}"
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def query_model(question):
|
98 |
-
"""
|
99 |
-
Process a question, find relevant information, and generate a response.
|
100 |
-
"""
|
101 |
if question == "":
|
102 |
-
return "
|
103 |
-
|
104 |
-
if not relevant_segment:
|
105 |
-
return "Could not find specific information. Please refine your question."
|
106 |
-
response = generate_response(question, relevant_segment)
|
107 |
return response
|
108 |
|
109 |
-
# Define the welcome message and specific topics the chatbot can provide information about
|
110 |
welcome_message = """
|
111 |
# Welcome to Ethical Eats Explorer!
|
112 |
-
|
113 |
## Your AI-driven assistant for restaurant recs in Seattle. Created by Saranya, Cindy, and Liana of the 2024 Kode With Klossy Seattle Camp.
|
114 |
"""
|
115 |
|
116 |
topics = """
|
117 |
### Please give me your restaurant preferences:
|
118 |
-
|
119 |
- Dietary Restrictions
|
120 |
- Cuisine Preferences (optional)
|
121 |
- Cuisines: American, Indian, Middle Eastern, Chinese, Italian, Thai, Hawaiian-Korean, Japanese, Ethiopian, Pakistani, Mexican, Ghanaian, Vietnamese, Filipino, Spanish, Turkish
|
122 |
- Budget Preferences (Low: $0 - $20, Moderate: $20 - $30, High: $30+ - per person)
|
123 |
-
|
124 |
Please send your message in the format: "Could you give me a (cuisine) restaurant with (dietary restriction) options that is (budget) budget?"
|
125 |
-
|
126 |
"""
|
127 |
|
128 |
-
# Setup the Gradio Blocks interface with custom layout components
|
129 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
130 |
-
gr.Markdown(welcome_message)
|
131 |
with gr.Row():
|
132 |
with gr.Column():
|
133 |
-
gr.Markdown(topics)
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
question = gr.Textbox(label="Your question", placeholder="Give me your information...")
|
137 |
answer = gr.Textbox(label="Explorer's Response", placeholder="Explorer will respond here...", interactive=False, lines=10)
|
138 |
submit_button = gr.Button("Submit")
|
139 |
submit_button.click(fn=query_model, inputs=question, outputs=answer)
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
demo.launch(share=True)
|
|
|
2 |
from sentence_transformers import SentenceTransformer, util
|
3 |
import openai
|
4 |
import os
|
5 |
+
import pandas as pd
|
6 |
|
7 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
8 |
|
9 |
+
# Initialize paths and model identifiers
|
10 |
+
filename = "output_topic_details.txt"
|
11 |
retrieval_model_name = 'output/sentence-transformer-finetuned/'
|
12 |
|
13 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
14 |
|
15 |
+
system_message = (
|
16 |
+
"You are a restaurant recommending chatbot that takes details about a restaurant including type of restaurant, "
|
17 |
+
"dietary restrictions, and budget and chooses a restaurant in Seattle which best fits the user's criteria. "
|
18 |
+
"Then you output the restaurant name and website link."
|
19 |
+
)
|
20 |
messages = [{"role": "system", "content": system_message}]
|
21 |
|
22 |
+
# Load the data into a DataFrame for easier querying
|
23 |
+
def load_and_preprocess_data(filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
try:
|
25 |
with open(filename, 'r', encoding='utf-8') as file:
|
26 |
+
data = file.read()
|
27 |
+
# Split into sections based on "Topic:" and then split into lines
|
28 |
+
sections = data.split("Topic: ")
|
29 |
+
restaurant_data = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
for section in sections[1:]:
|
32 |
+
lines = section.strip().split("\n")
|
33 |
+
topic = lines[0]
|
34 |
+
description = "\n".join(lines[1:])
|
35 |
+
if topic == "Details about Restaurants":
|
36 |
+
lines = description.split("\n")
|
37 |
+
# Convert to a DataFrame
|
38 |
+
df = pd.DataFrame([line.split(",") for line in lines[1:]], columns=lines[0].split(","))
|
39 |
+
restaurant_data.append(df)
|
40 |
|
41 |
+
# Concatenate all DataFrames into one
|
42 |
+
full_df = pd.concat(restaurant_data, ignore_index=True)
|
43 |
+
full_df.columns = full_df.columns.str.strip() # Strip any extra whitespace from column names
|
44 |
+
print("Data loaded and preprocessed successfully.")
|
45 |
+
return full_df
|
|
|
|
|
|
|
46 |
except Exception as e:
|
47 |
+
print(f"Failed to load or preprocess data: {e}")
|
48 |
+
return pd.DataFrame()
|
49 |
|
50 |
+
data_df = load_and_preprocess_data(filename)
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def filter_restaurants(cuisine=None, dietary_restrictions=None, budget=None):
|
53 |
+
df_filtered = data_df
|
54 |
+
|
55 |
+
if cuisine:
|
56 |
+
df_filtered = df_filtered[df_filtered['Type of Restaurant'].str.contains(cuisine, case=False, na=False)]
|
57 |
+
if dietary_restrictions:
|
58 |
+
for restriction in dietary_restrictions:
|
59 |
+
df_filtered = df_filtered[df_filtered[restriction].str.contains('Yes', case=False, na=False)]
|
60 |
+
if budget:
|
61 |
+
df_filtered = df_filtered[df_filtered['Price'].str.contains(budget, case=False, na=False)]
|
62 |
+
|
63 |
+
if df_filtered.empty:
|
64 |
+
return "No matching restaurants found."
|
65 |
+
|
66 |
+
# Convert DataFrame to a list of dictionaries for easier handling
|
67 |
+
restaurants = df_filtered[['Restaurant', 'Website']].to_dict(orient='records')
|
68 |
+
return restaurants
|
69 |
+
|
70 |
+
def generate_response(user_query):
|
71 |
+
# Example of parsing the query for simplicity
|
72 |
+
# You might want to use more sophisticated parsing and NLP for better results
|
73 |
+
# Dummy parsing based on example query format
|
74 |
+
cuisine = None
|
75 |
+
dietary_restrictions = []
|
76 |
+
budget = None
|
77 |
+
|
78 |
+
if 'gluten-free' in user_query.lower():
|
79 |
+
dietary_restrictions.append('Gluten-free Options?')
|
80 |
+
if 'vegan' in user_query.lower():
|
81 |
+
dietary_restrictions.append('Vegan Options?')
|
82 |
+
if 'lactose-intolerant' in user_query.lower():
|
83 |
+
dietary_restrictions.append('Lactose-Intolerant Options?')
|
84 |
+
if 'pescatarian' in user_query.lower():
|
85 |
+
dietary_restrictions.append('Pescatarian Options?')
|
86 |
+
|
87 |
+
if 'low' in user_query.lower():
|
88 |
+
budget = 'Low'
|
89 |
+
elif 'moderate' in user_query.lower():
|
90 |
+
budget = 'Moderate'
|
91 |
+
elif 'high' in user_query.lower():
|
92 |
+
budget = 'High'
|
93 |
+
|
94 |
+
# Handle cuisine extraction if needed
|
95 |
+
|
96 |
+
results = filter_restaurants(cuisine=cuisine, dietary_restrictions=dietary_restrictions, budget=budget)
|
97 |
+
if isinstance(results, str): # If no restaurants found
|
98 |
+
return results
|
99 |
+
|
100 |
+
response = "\n".join([f"{r['Restaurant']}: {r['Website']}" for r in results])
|
101 |
+
return response
|
102 |
|
103 |
def query_model(question):
|
|
|
|
|
|
|
104 |
if question == "":
|
105 |
+
return "Please provide your restaurant preferences."
|
106 |
+
response = generate_response(question)
|
|
|
|
|
|
|
107 |
return response
|
108 |
|
|
|
109 |
welcome_message = """
|
110 |
# Welcome to Ethical Eats Explorer!
|
|
|
111 |
## Your AI-driven assistant for restaurant recs in Seattle. Created by Saranya, Cindy, and Liana of the 2024 Kode With Klossy Seattle Camp.
|
112 |
"""
|
113 |
|
114 |
topics = """
|
115 |
### Please give me your restaurant preferences:
|
|
|
116 |
- Dietary Restrictions
|
117 |
- Cuisine Preferences (optional)
|
118 |
- Cuisines: American, Indian, Middle Eastern, Chinese, Italian, Thai, Hawaiian-Korean, Japanese, Ethiopian, Pakistani, Mexican, Ghanaian, Vietnamese, Filipino, Spanish, Turkish
|
119 |
- Budget Preferences (Low: $0 - $20, Moderate: $20 - $30, High: $30+ - per person)
|
|
|
120 |
Please send your message in the format: "Could you give me a (cuisine) restaurant with (dietary restriction) options that is (budget) budget?"
|
|
|
121 |
"""
|
122 |
|
|
|
123 |
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
|
124 |
+
gr.Markdown(welcome_message)
|
125 |
with gr.Row():
|
126 |
with gr.Column():
|
127 |
+
gr.Markdown(topics)
|
128 |
with gr.Row():
|
129 |
with gr.Column():
|
130 |
question = gr.Textbox(label="Your question", placeholder="Give me your information...")
|
131 |
answer = gr.Textbox(label="Explorer's Response", placeholder="Explorer will respond here...", interactive=False, lines=10)
|
132 |
submit_button = gr.Button("Submit")
|
133 |
submit_button.click(fn=query_model, inputs=question, outputs=answer)
|
|
|
134 |
|
135 |
+
demo.launch(share=True)
|
|