Spaces:
Build error
Build error
taquynhnga
commited on
Commit
•
0343e34
1
Parent(s):
63bdcb1
Update pages/2_SmoothGrad.py
Browse files- pages/2_SmoothGrad.py +20 -41
pages/2_SmoothGrad.py
CHANGED
@@ -16,40 +16,23 @@ BACKGROUND_COLOR = '#bcd0e7'
|
|
16 |
|
17 |
|
18 |
st.title('Feature attribution with SmoothGrad')
|
19 |
-
st.write(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
imagenet_df = pd.read_csv('./data/ImageNet_metadata.csv')
|
22 |
|
23 |
# --------------------------- LOAD function -----------------------------
|
24 |
|
25 |
-
# @st.cache(allow_output_mutation=True)
|
26 |
-
# @st.cache_data
|
27 |
-
# def load_images(image_ids):
|
28 |
-
# images = []
|
29 |
-
# for image_id in image_ids:
|
30 |
-
# dataset = load_dataset(image_id//10000)
|
31 |
-
# images.append(dataset[image_id%10000])
|
32 |
-
# return images
|
33 |
-
|
34 |
-
# @st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=False)
|
35 |
-
# @st.cache_resource
|
36 |
-
# def load_model(model_name):
|
37 |
-
# with st.spinner(f"Loading {model_name} model! This process might take 1-2 minutes..."):
|
38 |
-
# if model_name == 'ResNet':
|
39 |
-
# model_file_path = 'microsoft/resnet-50'
|
40 |
-
# feature_extractor = AutoFeatureExtractor.from_pretrained(model_file_path, crop_pct=1.0)
|
41 |
-
# model = AutoModelForImageClassification.from_pretrained(model_file_path)
|
42 |
-
# model.eval()
|
43 |
-
# elif model_name == 'ConvNeXt':
|
44 |
-
# model_file_path = 'facebook/convnext-tiny-224'
|
45 |
-
# feature_extractor = AutoFeatureExtractor.from_pretrained(model_file_path, crop_pct=1.0)
|
46 |
-
# model = AutoModelForImageClassification.from_pretrained(model_file_path)
|
47 |
-
# model.eval()
|
48 |
-
# else:
|
49 |
-
# model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v2', pretrained=True)
|
50 |
-
# model.eval()
|
51 |
-
# feature_extractor = None
|
52 |
-
# return model, feature_extractor
|
53 |
|
54 |
images = []
|
55 |
image_ids = []
|
@@ -90,18 +73,14 @@ for i, model_name in enumerate(selected_models):
|
|
90 |
|
91 |
|
92 |
# DISPLAY ----------------------------------
|
93 |
-
|
94 |
-
header_cols
|
95 |
-
header_cols[
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
# grids[0][1].write('Original image')
|
102 |
-
|
103 |
-
# for i, model_name in enumerate(selected_models):
|
104 |
-
# models[model_name], feature_extractors[model_name] = load_model(model_name)
|
105 |
|
106 |
|
107 |
@st.cache(allow_output_mutation=True)
|
|
|
16 |
|
17 |
|
18 |
st.title('Feature attribution with SmoothGrad')
|
19 |
+
st.write("""> **Which features are responsible for the current prediction?**
|
20 |
+
|
21 |
+
In machine learning, it is helpful to identify the significant features of the input (e.g., pixels for images) that affect the model's prediction.
|
22 |
+
If the model makes an incorrect prediction, we might want to determine which features contributed to the mistake.
|
23 |
+
To do this, we can generate a feature importance mask, which is a grayscale image with the same size as the original image.
|
24 |
+
The brightness of each pixel in the mask represents the importance of that feature to the model's prediction.
|
25 |
+
|
26 |
+
There are various methods to calculate an image sensitivity mask for a specific prediction.
|
27 |
+
One simple way is to use the gradient of a class prediction neuron concerning the input pixels, indicating how the prediction is affected by small pixel changes.
|
28 |
+
However, this method usually produces a noisy mask.
|
29 |
+
To reduce the noise, the [SmoothGrad](https://arxiv.org/abs/1706.03825) technique is used, which adds Gaussian noise to multiple copies of the image and averages the resulting gradients.
|
30 |
+
""")
|
31 |
|
32 |
imagenet_df = pd.read_csv('./data/ImageNet_metadata.csv')
|
33 |
|
34 |
# --------------------------- LOAD function -----------------------------
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
images = []
|
38 |
image_ids = []
|
|
|
73 |
|
74 |
|
75 |
# DISPLAY ----------------------------------
|
76 |
+
if run_button:
|
77 |
+
header_cols = st.columns([1, 1] + [2]*len(selected_models))
|
78 |
+
header_cols[0].markdown(f'<div style="text-align: center;margin-bottom: 10px;background-color:{BACKGROUND_COLOR};"><b>Image ID</b></div>', unsafe_allow_html=True)
|
79 |
+
header_cols[1].markdown(f'<div style="text-align: center;margin-bottom: 10px;background-color:{BACKGROUND_COLOR};"><b>Original Image</b></div>', unsafe_allow_html=True)
|
80 |
+
for i, model_name in enumerate(selected_models):
|
81 |
+
header_cols[i + 2].markdown(f'<div style="text-align: center;margin-bottom: 10px;background-color:{BACKGROUND_COLOR};"><b>{model_name}</b></div>', unsafe_allow_html=True)
|
82 |
+
|
83 |
+
grids = make_grid(cols=2+len(selected_models)*2, rows=len(image_ids)+1)
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
@st.cache(allow_output_mutation=True)
|