Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import random | |
from backend.utils import make_grid, load_dataset, load_model, load_images | |
from backend.smooth_grad import generate_smoothgrad_mask, ShowImage, fig2img | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
import torch | |
from matplotlib.backends.backend_agg import RendererAgg | |
_lock = RendererAgg.lock | |
st.set_page_config(layout='wide') | |
BACKGROUND_COLOR = '#bcd0e7' | |
st.title('Feature attribution visualization with SmoothGrad') | |
st.write("""> **Which features are responsible for the current prediction of ConvNeXt?** | |
In machine learning, it is helpful to identify the significant features of the input (e.g., pixels for images) that affect the model's prediction. | |
If the model makes an incorrect prediction, we might want to determine which features contributed to the mistake. | |
To do this, we can generate a feature importance mask, which is a grayscale image with the same size as the original image. | |
The brightness of each pixel in the mask represents the importance of that feature to the model's prediction. | |
There are various methods to calculate an image sensitivity mask for a specific prediction. | |
One simple way is to use the gradient of a class prediction neuron concerning the input pixels, indicating how the prediction is affected by small pixel changes. | |
However, this method usually produces a noisy mask. | |
To reduce the noise, the SmoothGrad technique as described in [SmoothGrad: Removing noise by adding noise](https://arxiv.org/abs/1706.03825) by Daniel _et al_ is used, | |
which adds Gaussian noise to multiple copies of the image and averages the resulting gradients. | |
""") | |
instruction_text = """Users need to input the model(s), type of image set and image set setting to use this functionality. | |
1. Choose model: Users can choose one or more models for comparison. | |
There are 3 models supported: [ConvNeXt](https://huggingface.co/facebook/convnext-tiny-224), | |
[ResNet](https://huggingface.co/microsoft/resnet-50) and [MobileNet](https://pytorch.org/hub/pytorch_vision_mobilenet_v2/). | |
These 3 models have similar number of parameters. | |
2. Choose type of Image set: There are 2 types of Image set. They are _User-defined set_ and _Random set_. | |
3. Image set setting: If users choose _User-defined set_ in Image set, | |
users need to enter a list of image IDs separated by commas (,). For example, `0,1,4,7` is a valid input. | |
Check the page [ImageNet1k](/ImageNet1k) to see all the Image IDs. | |
If users choose _Random set_ in Image set, users just need to choose the number of random images to display here. | |
""" | |
with st.expander("See more instruction", expanded=False): | |
st.write(instruction_text) | |
imagenet_df = pd.read_csv('./data/ImageNet_metadata.csv') | |
# --------------------------- LOAD function ----------------------------- | |
images = [] | |
image_ids = [] | |
# INPUT ------------------------------ | |
st.header('Input') | |
with st.form('smooth_grad_form'): | |
st.markdown('**Model and Input Setting**') | |
selected_models = st.multiselect('Model', options=['ConvNeXt', 'ResNet', 'MobileNet']) | |
selected_image_set = st.selectbox('Image set', ['User-defined set', 'Random set']) | |
summit_button = st.form_submit_button('Set') | |
if summit_button: | |
setting_container = st.container() | |
# for id in image_ids: | |
# images = load_images(image_ids) | |
with st.form('2nd_form'): | |
st.markdown('**Image set setting**') | |
if selected_image_set == 'Random set': | |
no_images = st.slider('Number of images', 1, 50, value=10) | |
image_ids = random.sample(list(range(50_000)), k=no_images) | |
else: | |
text = st.text_area('Specific Image IDs', value='0') | |
image_ids = list(map(lambda x: int(x.strip()), text.split(','))) | |
run_button = st.form_submit_button('Display output') | |
if run_button: | |
for id in image_ids: | |
images = load_images(image_ids) | |
st.header('Output') | |
models = {} | |
feature_extractors = {} | |
for i, model_name in enumerate(selected_models): | |
models[model_name], feature_extractors[model_name] = load_model(model_name) | |
# DISPLAY ---------------------------------- | |
if run_button: | |
header_cols = st.columns([1, 1] + [2]*len(selected_models)) | |
header_cols[0].markdown(f'<div style="text-align: center;margin-bottom: 10px;background-color:{BACKGROUND_COLOR};"><b>Image ID</b></div>', unsafe_allow_html=True) | |
header_cols[1].markdown(f'<div style="text-align: center;margin-bottom: 10px;background-color:{BACKGROUND_COLOR};"><b>Original Image</b></div>', unsafe_allow_html=True) | |
for i, model_name in enumerate(selected_models): | |
header_cols[i + 2].markdown(f'<div style="text-align: center;margin-bottom: 10px;background-color:{BACKGROUND_COLOR};"><b>{model_name}</b></div>', unsafe_allow_html=True) | |
grids = make_grid(cols=2+len(selected_models)*2, rows=len(image_ids)+1) | |
# @st.cache_data | |
def generate_images(image_id, model_name): | |
j = image_ids.index(image_id) | |
image = images[j]['image'] | |
return generate_smoothgrad_mask( | |
image, model_name, | |
models[model_name], feature_extractors[model_name], num_samples=10) | |
with _lock: | |
for j, (image_id, image_dict) in enumerate(zip(image_ids, images)): | |
grids[j][0].write(f'{image_id}. {image_dict["label"]}') | |
image = image_dict['image'] | |
ori_image = ShowImage(np.asarray(image)) | |
grids[j][1].image(ori_image) | |
for i, model_name in enumerate(selected_models): | |
# ori_image, heatmap_image, masked_image = generate_smoothgrad_mask(image, | |
# model_name, models[model_name], feature_extractors[model_name], num_samples=10) | |
heatmap_image, masked_image = generate_images(image_id, model_name) | |
# grids[j][1].image(ori_image) | |
grids[j][i*2+2].image(heatmap_image) | |
grids[j][i*2+3].image(masked_image) |