import torch | |
import gradio as gr | |
from typing import Dict | |
from transformers import pipeline | |
def food_not_food_classifier(text: str) -> Dict[str, float]: | |
food_not_food_classifier = pipeline(task="text-classification", | |
model="tanvircr7/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
top_k=None) | |
outputs = food_not_food_classifier(text)[0] | |
output_dict = {} | |
for item in outputs: | |
output_dict[item["label"]] = item["score"] | |
return output_dict | |
description = """ | |
A text classifier to determine if a sentence is about food or not food. | |
Fine-tuned from DistilBERT | |
""" | |
demo = gr.Interface(fn=food_not_food_classifier, | |
inputs="text", | |
outputs=gr.Label(num_top_classes=2), | |
title="Food or Not Food Text Classifier", | |
description=description, | |
examples=[["I whipped up a fresh batch of code"],["A delicious photo of a plate"]] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |