tanukinet commited on
Commit
e58a972
1 Parent(s): 8dc8970

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -4
app.py CHANGED
@@ -1,13 +1,36 @@
1
  import gradio as gr
2
- import os
 
 
3
 
4
 
5
- def image_mod(image):
6
- return image.rotate(45)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
 
9
  demo = gr.Interface(
10
- image_mod,
11
  gr.Image(type="pil"),
12
  "image",
13
  examples=[
 
1
  import gradio as gr
2
+ import torch
3
+ from PIL import ImageDraw
4
+ from transformers import AutoModelForObjectDetection, AutoImageProcessor
5
 
6
 
7
+ processor = AutoImageProcessor.from_pretrained("tanukinet/hanko")
8
+ model = AutoModelForObjectDetection.from_pretrained("tanukinet/hanko", ignore_mismatched_sizes=True,)
9
+
10
+
11
+ def object_detection(image):
12
+ image = image.copy()
13
+ inputs = processor(images=image, return_tensors="pt")
14
+ outputs = model(**inputs)
15
+ target_sizes = torch.tensor([image.size[::-1]])
16
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.8)[0]
17
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
18
+ box = [round(i, 2) for i in box.tolist()]
19
+ print(
20
+ f"Detected {model.config.id2label[label.item()]} with confidence "
21
+ f"{round(score.item(), 3)} at location {box}"
22
+ )
23
+ draw = ImageDraw.Draw(image)
24
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
25
+ box = [round(i, 2) for i in box.tolist()]
26
+ x, y, x2, y2 = tuple(box)
27
+ draw.rectangle((x, y, x2, y2), outline="red", width=1)
28
+ draw.text((x, y), model.config.id2label[label.item()], fill="white")
29
+ return image
30
 
31
 
32
  demo = gr.Interface(
33
+ object_detection,
34
  gr.Image(type="pil"),
35
  "image",
36
  examples=[