Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline | |
import gradio as gr | |
import torch | |
model_name = "mistralai/Mistral-7B-Instruct-v0.2" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
q_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
def build_prompt(context, num_questions): | |
return ( | |
f"You are an expert interview question generator. " | |
f"Generate {num_questions} concise and relevant interview questions based on the following topic or paragraph:\n\n" | |
f"{context.strip()}\n\nQuestions:" | |
) | |
def generate_questions(context, num_questions): | |
prompt = build_prompt(context, num_questions) | |
output = q_pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9) | |
return output[0]['generated_text'].split("Questions:")[-1].strip() | |
iface = gr.Interface( | |
fn=generate_questions, | |
inputs=[ | |
gr.Textbox(lines=4, label="Enter a topic or paragraph"), | |
gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Number of Questions") | |
], | |
outputs="text", | |
title="Mistral Interview Question Generator", | |
description="Generates interview questions using the Mistral-7B-Instruct model in 4-bit for efficient memory usage." | |
) | |
if __name__ == "__main__": | |
iface.launch() |