tanujdev's picture
Upload folder using huggingface_hub
c6bb02d verified
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
import gradio as gr
import torch
model_name = "mistralai/Mistral-7B-Instruct-v0.2"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
q_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
def build_prompt(context, num_questions):
return (
f"You are an expert interview question generator. "
f"Generate {num_questions} concise and relevant interview questions based on the following topic or paragraph:\n\n"
f"{context.strip()}\n\nQuestions:"
)
def generate_questions(context, num_questions):
prompt = build_prompt(context, num_questions)
output = q_pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.9)
return output[0]['generated_text'].split("Questions:")[-1].strip()
iface = gr.Interface(
fn=generate_questions,
inputs=[
gr.Textbox(lines=4, label="Enter a topic or paragraph"),
gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Number of Questions")
],
outputs="text",
title="Mistral Interview Question Generator",
description="Generates interview questions using the Mistral-7B-Instruct model in 4-bit for efficient memory usage."
)
if __name__ == "__main__":
iface.launch()