Spaces:
Sleeping
Sleeping
tanthinhdt
commited on
Commit
•
3a61959
1
Parent(s):
f5403ef
Update app.py
Browse files
app.py
CHANGED
@@ -1,190 +1,190 @@
|
|
1 |
-
import torch
|
2 |
-
import urllib
|
3 |
-
import streamlit as st
|
4 |
-
from io import BytesIO
|
5 |
-
from time import time
|
6 |
-
from PIL import Image
|
7 |
-
from transformers import AutoModelForVision2Seq, AutoProcessor
|
8 |
-
|
9 |
-
|
10 |
-
def scale_image(image: Image.Image, target_height: int = 500) -> Image.Image:
|
11 |
-
"""
|
12 |
-
Scale an image to a target height while maintaining the aspect ratio.
|
13 |
-
|
14 |
-
Parameters
|
15 |
-
----------
|
16 |
-
image : Image.Image
|
17 |
-
The image to scale.
|
18 |
-
target_height : int, optional (default=500)
|
19 |
-
The target height of the image.
|
20 |
-
|
21 |
-
Returns
|
22 |
-
-------
|
23 |
-
Image.Image
|
24 |
-
The scaled image.
|
25 |
-
"""
|
26 |
-
width, height = image.size
|
27 |
-
aspect_ratio = width / height
|
28 |
-
target_width = int(aspect_ratio * target_height)
|
29 |
-
return image.resize((target_width, target_height))
|
30 |
-
|
31 |
-
|
32 |
-
def upload_image() -> None:
|
33 |
-
"""
|
34 |
-
Upload an image.
|
35 |
-
"""
|
36 |
-
if st.session_state.file_uploader is not None:
|
37 |
-
st.session_state.image = Image.open(st.session_state.file_uploader)
|
38 |
-
|
39 |
-
|
40 |
-
def read_image_from_url() -> None:
|
41 |
-
"""
|
42 |
-
Read an image from a URL.
|
43 |
-
"""
|
44 |
-
if st.session_state.image_url is not None:
|
45 |
-
with urllib.request.urlopen(st.session_state.image_url) as response:
|
46 |
-
st.session_state.image = Image.open(BytesIO(response.read()))
|
47 |
-
|
48 |
-
|
49 |
-
def inference() -> None:
|
50 |
-
"""
|
51 |
-
Perform inference on an image and generate a caption.
|
52 |
-
"""
|
53 |
-
start_time = time()
|
54 |
-
outputs = st.session_state.processor(
|
55 |
-
images=st.session_state.image,
|
56 |
-
return_tensors="pt",
|
57 |
-
)
|
58 |
-
outputs = {k: v.to(st.session_state.device.lower()) for k, v in outputs.items()}
|
59 |
-
st.session_state.model.to(st.session_state.device.lower())
|
60 |
-
logits = st.session_state.model.generate(
|
61 |
-
**outputs,
|
62 |
-
max_length=st.session_state.max_length,
|
63 |
-
num_beams=st.session_state.num_beams,
|
64 |
-
)
|
65 |
-
caption = st.session_state.processor.decode(
|
66 |
-
logits[0], skip_special_tokens=True
|
67 |
-
)
|
68 |
-
end_time = time()
|
69 |
-
|
70 |
-
st.session_state.inference_time = round(end_time - start_time, 2)
|
71 |
-
st.session_state.caption = caption
|
72 |
-
|
73 |
-
st.session_state.model.to("cpu")
|
74 |
-
torch.cuda.empty_cache()
|
75 |
-
|
76 |
-
|
77 |
-
def main() -> None:
|
78 |
-
"""
|
79 |
-
Main function for the Streamlit app.
|
80 |
-
"""
|
81 |
-
if "model" not in st.session_state:
|
82 |
-
st.session_state.model = AutoModelForVision2Seq.from_pretrained(
|
83 |
-
"tanthinhdt/blip-base_with-pretrained_flickr30k",
|
84 |
-
cache_dir="models/huggingface",
|
85 |
-
)
|
86 |
-
st.session_state.model.eval()
|
87 |
-
if "processor" not in st.session_state:
|
88 |
-
st.session_state.processor = AutoProcessor.from_pretrained(
|
89 |
-
"Salesforce/blip-image-captioning-base",
|
90 |
-
cache_dir="models/huggingface",
|
91 |
-
)
|
92 |
-
if "image" not in st.session_state:
|
93 |
-
st.session_state.image = None
|
94 |
-
if "caption" not in st.session_state:
|
95 |
-
st.session_state.caption = None
|
96 |
-
if "inference_time" not in st.session_state:
|
97 |
-
st.session_state.inference_time = 0.0
|
98 |
-
|
99 |
-
# Set page configuration
|
100 |
-
st.set_page_config(
|
101 |
-
page_title="Image Captioning App",
|
102 |
-
page_icon="📸",
|
103 |
-
initial_sidebar_state="expanded",
|
104 |
-
)
|
105 |
-
|
106 |
-
# Set sidebar layout
|
107 |
-
st.sidebar.header("Workspace")
|
108 |
-
st.sidebar.file_uploader(
|
109 |
-
"Upload an image",
|
110 |
-
type=["jpg", "jpeg", "png"],
|
111 |
-
accept_multiple_files=False,
|
112 |
-
on_change=upload_image,
|
113 |
-
key="file_uploader",
|
114 |
-
help="Upload an image to generate a caption.",
|
115 |
-
)
|
116 |
-
st.sidebar.text_input(
|
117 |
-
"Image URL",
|
118 |
-
on_change=read_image_from_url,
|
119 |
-
key="image_url",
|
120 |
-
help="Enter the URL of an image to generate a caption.",
|
121 |
-
)
|
122 |
-
st.sidebar.divider()
|
123 |
-
st.sidebar.header("Settings")
|
124 |
-
st.sidebar.selectbox(
|
125 |
-
label="Device",
|
126 |
-
options=["CPU", "CUDA"],
|
127 |
-
index=
|
128 |
-
key="device",
|
129 |
-
help="The device to use for inference.",
|
130 |
-
)
|
131 |
-
st.sidebar.number_input(
|
132 |
-
label="Max length",
|
133 |
-
min_value=32,
|
134 |
-
max_value=128,
|
135 |
-
value=64,
|
136 |
-
step=1,
|
137 |
-
key="max_length",
|
138 |
-
help="The maximum length of the generated caption.",
|
139 |
-
)
|
140 |
-
st.sidebar.number_input(
|
141 |
-
label="Number of beams",
|
142 |
-
min_value=1,
|
143 |
-
max_value=10,
|
144 |
-
value=4,
|
145 |
-
step=1,
|
146 |
-
key="num_beams",
|
147 |
-
help="The number of beams to use during decoding.",
|
148 |
-
)
|
149 |
-
|
150 |
-
# Set main layout
|
151 |
-
st.markdown(
|
152 |
-
"""
|
153 |
-
<h1 style='text-align: center;'>
|
154 |
-
Image Captioning
|
155 |
-
</h1>
|
156 |
-
""",
|
157 |
-
unsafe_allow_html=True,
|
158 |
-
)
|
159 |
-
st.divider()
|
160 |
-
image_container = st.container(height=450)
|
161 |
-
st.divider()
|
162 |
-
col_1, col_2, col_3 = st.columns([1, 1, 2])
|
163 |
-
resolution_display = col_1.empty()
|
164 |
-
runtime_display = col_2.empty()
|
165 |
-
caption_display = col_3.empty()
|
166 |
-
|
167 |
-
# Display the image and generate a caption
|
168 |
-
if st.session_state.image is not None:
|
169 |
-
image_container.image(scale_image(st.session_state.image, target_height=400))
|
170 |
-
|
171 |
-
resolution_display.metric(
|
172 |
-
label="Image Resolution",
|
173 |
-
value=f"{st.session_state.image.width}x{st.session_state.image.height}",
|
174 |
-
)
|
175 |
-
|
176 |
-
with st.spinner("Generating caption..."):
|
177 |
-
inference()
|
178 |
-
|
179 |
-
caption_display.text_area(
|
180 |
-
label="Caption",
|
181 |
-
value=st.session_state.caption,
|
182 |
-
)
|
183 |
-
runtime_display.metric(
|
184 |
-
label="Inference Time",
|
185 |
-
value=f"{st.session_state.inference_time}s",
|
186 |
-
)
|
187 |
-
|
188 |
-
|
189 |
-
if __name__ == "__main__":
|
190 |
-
main()
|
|
|
1 |
+
import torch
|
2 |
+
import urllib
|
3 |
+
import streamlit as st
|
4 |
+
from io import BytesIO
|
5 |
+
from time import time
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
8 |
+
|
9 |
+
|
10 |
+
def scale_image(image: Image.Image, target_height: int = 500) -> Image.Image:
|
11 |
+
"""
|
12 |
+
Scale an image to a target height while maintaining the aspect ratio.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
image : Image.Image
|
17 |
+
The image to scale.
|
18 |
+
target_height : int, optional (default=500)
|
19 |
+
The target height of the image.
|
20 |
+
|
21 |
+
Returns
|
22 |
+
-------
|
23 |
+
Image.Image
|
24 |
+
The scaled image.
|
25 |
+
"""
|
26 |
+
width, height = image.size
|
27 |
+
aspect_ratio = width / height
|
28 |
+
target_width = int(aspect_ratio * target_height)
|
29 |
+
return image.resize((target_width, target_height))
|
30 |
+
|
31 |
+
|
32 |
+
def upload_image() -> None:
|
33 |
+
"""
|
34 |
+
Upload an image.
|
35 |
+
"""
|
36 |
+
if st.session_state.file_uploader is not None:
|
37 |
+
st.session_state.image = Image.open(st.session_state.file_uploader)
|
38 |
+
|
39 |
+
|
40 |
+
def read_image_from_url() -> None:
|
41 |
+
"""
|
42 |
+
Read an image from a URL.
|
43 |
+
"""
|
44 |
+
if st.session_state.image_url is not None:
|
45 |
+
with urllib.request.urlopen(st.session_state.image_url) as response:
|
46 |
+
st.session_state.image = Image.open(BytesIO(response.read()))
|
47 |
+
|
48 |
+
|
49 |
+
def inference() -> None:
|
50 |
+
"""
|
51 |
+
Perform inference on an image and generate a caption.
|
52 |
+
"""
|
53 |
+
start_time = time()
|
54 |
+
outputs = st.session_state.processor(
|
55 |
+
images=st.session_state.image,
|
56 |
+
return_tensors="pt",
|
57 |
+
)
|
58 |
+
outputs = {k: v.to(st.session_state.device.lower()) for k, v in outputs.items()}
|
59 |
+
st.session_state.model.to(st.session_state.device.lower())
|
60 |
+
logits = st.session_state.model.generate(
|
61 |
+
**outputs,
|
62 |
+
max_length=st.session_state.max_length,
|
63 |
+
num_beams=st.session_state.num_beams,
|
64 |
+
)
|
65 |
+
caption = st.session_state.processor.decode(
|
66 |
+
logits[0], skip_special_tokens=True
|
67 |
+
)
|
68 |
+
end_time = time()
|
69 |
+
|
70 |
+
st.session_state.inference_time = round(end_time - start_time, 2)
|
71 |
+
st.session_state.caption = caption
|
72 |
+
|
73 |
+
st.session_state.model.to("cpu")
|
74 |
+
torch.cuda.empty_cache()
|
75 |
+
|
76 |
+
|
77 |
+
def main() -> None:
|
78 |
+
"""
|
79 |
+
Main function for the Streamlit app.
|
80 |
+
"""
|
81 |
+
if "model" not in st.session_state:
|
82 |
+
st.session_state.model = AutoModelForVision2Seq.from_pretrained(
|
83 |
+
"tanthinhdt/blip-base_with-pretrained_flickr30k",
|
84 |
+
cache_dir="models/huggingface",
|
85 |
+
)
|
86 |
+
st.session_state.model.eval()
|
87 |
+
if "processor" not in st.session_state:
|
88 |
+
st.session_state.processor = AutoProcessor.from_pretrained(
|
89 |
+
"Salesforce/blip-image-captioning-base",
|
90 |
+
cache_dir="models/huggingface",
|
91 |
+
)
|
92 |
+
if "image" not in st.session_state:
|
93 |
+
st.session_state.image = None
|
94 |
+
if "caption" not in st.session_state:
|
95 |
+
st.session_state.caption = None
|
96 |
+
if "inference_time" not in st.session_state:
|
97 |
+
st.session_state.inference_time = 0.0
|
98 |
+
|
99 |
+
# Set page configuration
|
100 |
+
st.set_page_config(
|
101 |
+
page_title="Image Captioning App",
|
102 |
+
page_icon="📸",
|
103 |
+
initial_sidebar_state="expanded",
|
104 |
+
)
|
105 |
+
|
106 |
+
# Set sidebar layout
|
107 |
+
st.sidebar.header("Workspace")
|
108 |
+
st.sidebar.file_uploader(
|
109 |
+
"Upload an image",
|
110 |
+
type=["jpg", "jpeg", "png"],
|
111 |
+
accept_multiple_files=False,
|
112 |
+
on_change=upload_image,
|
113 |
+
key="file_uploader",
|
114 |
+
help="Upload an image to generate a caption.",
|
115 |
+
)
|
116 |
+
st.sidebar.text_input(
|
117 |
+
"Image URL",
|
118 |
+
on_change=read_image_from_url,
|
119 |
+
key="image_url",
|
120 |
+
help="Enter the URL of an image to generate a caption.",
|
121 |
+
)
|
122 |
+
st.sidebar.divider()
|
123 |
+
st.sidebar.header("Settings")
|
124 |
+
st.sidebar.selectbox(
|
125 |
+
label="Device",
|
126 |
+
options=["CPU", "CUDA"],
|
127 |
+
index=1 if torch.cuda.is_available() else 0,
|
128 |
+
key="device",
|
129 |
+
help="The device to use for inference.",
|
130 |
+
)
|
131 |
+
st.sidebar.number_input(
|
132 |
+
label="Max length",
|
133 |
+
min_value=32,
|
134 |
+
max_value=128,
|
135 |
+
value=64,
|
136 |
+
step=1,
|
137 |
+
key="max_length",
|
138 |
+
help="The maximum length of the generated caption.",
|
139 |
+
)
|
140 |
+
st.sidebar.number_input(
|
141 |
+
label="Number of beams",
|
142 |
+
min_value=1,
|
143 |
+
max_value=10,
|
144 |
+
value=4,
|
145 |
+
step=1,
|
146 |
+
key="num_beams",
|
147 |
+
help="The number of beams to use during decoding.",
|
148 |
+
)
|
149 |
+
|
150 |
+
# Set main layout
|
151 |
+
st.markdown(
|
152 |
+
"""
|
153 |
+
<h1 style='text-align: center;'>
|
154 |
+
Image Captioning
|
155 |
+
</h1>
|
156 |
+
""",
|
157 |
+
unsafe_allow_html=True,
|
158 |
+
)
|
159 |
+
st.divider()
|
160 |
+
image_container = st.container(height=450)
|
161 |
+
st.divider()
|
162 |
+
col_1, col_2, col_3 = st.columns([1, 1, 2])
|
163 |
+
resolution_display = col_1.empty()
|
164 |
+
runtime_display = col_2.empty()
|
165 |
+
caption_display = col_3.empty()
|
166 |
+
|
167 |
+
# Display the image and generate a caption
|
168 |
+
if st.session_state.image is not None:
|
169 |
+
image_container.image(scale_image(st.session_state.image, target_height=400))
|
170 |
+
|
171 |
+
resolution_display.metric(
|
172 |
+
label="Image Resolution",
|
173 |
+
value=f"{st.session_state.image.width}x{st.session_state.image.height}",
|
174 |
+
)
|
175 |
+
|
176 |
+
with st.spinner("Generating caption..."):
|
177 |
+
inference()
|
178 |
+
|
179 |
+
caption_display.text_area(
|
180 |
+
label="Caption",
|
181 |
+
value=st.session_state.caption,
|
182 |
+
)
|
183 |
+
runtime_display.metric(
|
184 |
+
label="Inference Time",
|
185 |
+
value=f"{st.session_state.inference_time}s",
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
main()
|