Spaces:
Build error
Build error
Tan Gezerman
commited on
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
import chainlit as cl
|
| 3 |
+
from langchain_chroma import Chroma
|
| 4 |
+
from langchain_core.prompts import PromptTemplate
|
| 5 |
+
from langchain_core.callbacks import CallbackManager, AsyncCallbackManagerForLLMRun
|
| 6 |
+
from langchain_community.llms import LlamaCpp
|
| 7 |
+
from chainlit.types import ThreadDict
|
| 8 |
+
from langchain.chains import RetrievalQA, ConversationChain
|
| 9 |
+
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
| 10 |
+
from langchain.chains.conversation.memory import ConversationBufferMemory
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# ctransformers is no longer used
|
| 15 |
+
""" from langchain_community.llms import CTransformers
|
| 16 |
+
|
| 17 |
+
# Initialize the language model
|
| 18 |
+
llm = CTransformers(model='Model/llama-2-7b-chat.ggmlv3.q2_K.bin', # 2 bit quantized model
|
| 19 |
+
model_type='llama',
|
| 20 |
+
config={'max_new_tokens': 256, # max tokens in reply
|
| 21 |
+
'temperature': 0.01, } # randomness of the reply
|
| 22 |
+
)
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
# Initialize the language model with LlamaCpp
|
| 26 |
+
llm = LlamaCpp(model_path="Model/llama-2-7b-chat.Q4_K_M.gguf", # token streaming to terminal
|
| 27 |
+
device="cpu",verbose = True, max_tokens = 4096, #offloads ALL layers to GPU, uses around 6 GB of Vram
|
| 28 |
+
config={ # max tokens in reply
|
| 29 |
+
'temperature': 0.75} # randomness of the reply
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
DATA_PATH = 'Data/'
|
| 33 |
+
|
| 34 |
+
DB_CHROMA_PATH = 'vectorstore/db_chroma'
|
| 35 |
+
|
| 36 |
+
embedding_function = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', model_kwargs={'device': 'cpu'})
|
| 37 |
+
|
| 38 |
+
db = Chroma(persist_directory=DB_CHROMA_PATH, embedding_function=embedding_function)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
rag_pipeline = RetrievalQA.from_chain_type(
|
| 42 |
+
llm=llm, chain_type='stuff',
|
| 43 |
+
retriever=db.as_retriever(),
|
| 44 |
+
return_source_documents=True
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
template = """
|
| 49 |
+
You are an AI specialized in the medical domain.
|
| 50 |
+
Your purpose is to provide accurate, clear, and helpful responses to medical-related inquiries.
|
| 51 |
+
You must avoid misinformation at all costs. Do not respond to questions outside of the medical domain.
|
| 52 |
+
If you are unsure or lack information about a query, you must clearly state that you do not know the answer.
|
| 53 |
+
|
| 54 |
+
Question: {query}
|
| 55 |
+
|
| 56 |
+
Answer:
|
| 57 |
+
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
prompt_template = PromptTemplate(input_variables=["query"],template=template)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
conversation_buf = ConversationChain(
|
| 65 |
+
llm=llm,
|
| 66 |
+
memory=ConversationBufferMemory(),
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@cl.on_chat_start
|
| 73 |
+
async def on_chat_start():
|
| 74 |
+
pass
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@cl.step(type="llm")
|
| 80 |
+
def get_response(query):
|
| 81 |
+
"""
|
| 82 |
+
Generates a response from the language model based on the user's input. If the input includes
|
| 83 |
+
'-rag', it uses a retrieval-augmented generation pipeline, otherwise, it directly invokes
|
| 84 |
+
the language model.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
question (str): The user's input text.
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
str: The language model's response, potentially including source documents if '-rag' was used.
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
if "-rag" in query.lower():
|
| 95 |
+
response = rag_pipeline(prompt_template.format(query=query))
|
| 96 |
+
result = response["result"]
|
| 97 |
+
source = response["source_documents"]
|
| 98 |
+
if source:
|
| 99 |
+
source_details = "\n\nSources:"
|
| 100 |
+
for source in source:
|
| 101 |
+
page_content = source.page_content
|
| 102 |
+
page_number = source.metadata['page']
|
| 103 |
+
source_book = source.metadata['source']
|
| 104 |
+
source_details += f"\n- Page {page_number} from {source_book}: \"{page_content}\""
|
| 105 |
+
|
| 106 |
+
result += source_details
|
| 107 |
+
return result
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
return llm.invoke(prompt_template.format(query=query))
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
@cl.on_message
|
| 115 |
+
async def on_message(message: cl.Message):
|
| 116 |
+
"""
|
| 117 |
+
Fetches the response from the language model and shows it in the web ui.
|
| 118 |
+
"""
|
| 119 |
+
try:
|
| 120 |
+
response = get_response(message.content)
|
| 121 |
+
msg = cl.Message(content=response)
|
| 122 |
+
except Exception as e:
|
| 123 |
+
msg = cl.Message(content=str(e))
|
| 124 |
+
|
| 125 |
+
await msg.send()
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@cl.on_chat_resume
|
| 131 |
+
async def on_chat_resume(thread: ThreadDict):
|
| 132 |
+
pass # TODO user history gets fed to LLM
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
@cl.on_chat_end
|
| 137 |
+
def on_chat_end():
|
| 138 |
+
pass
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
@cl.password_auth_callback
|
| 143 |
+
def auth_callback(username: str, password: str):
|
| 144 |
+
# Fetch the user matching username from your database
|
| 145 |
+
# and compare the hashed password with the value stored in the database
|
| 146 |
+
if (username, password) == ("karcan", "karcan123"):
|
| 147 |
+
return cl.User(
|
| 148 |
+
identifier="admin", metadata={"role": "admin", "provider": "credentials"}
|
| 149 |
+
)
|
| 150 |
+
else:
|
| 151 |
+
return None
|