taneemishere
commited on
Commit
β’
a94700e
1
Parent(s):
5ee6650
fixes some warnings, model names chanages
Browse files- classes/.DS_Store +0 -0
- classes/model/.DS_Store +0 -0
- classes/model/{pix2code2.py β Main_Model.py} +4 -4
- classes/model/__pycache__/pix2code2.cpython-35.pyc +0 -0
- classes/model/__pycache__/pix2code2.cpython-38.pyc +0 -0
- classes/model/__pycache__/pix2code2.cpython-39.pyc +0 -0
- classes/model/bin/{pix2code2.h5 β Main_Model.h5} +0 -0
- classes/model/bin/{pix2code2.json β Main_Model.json} +0 -0
- main_program.py +3 -3
classes/.DS_Store
CHANGED
Binary files a/classes/.DS_Store and b/classes/.DS_Store differ
|
|
classes/model/.DS_Store
CHANGED
Binary files a/classes/model/.DS_Store and b/classes/model/.DS_Store differ
|
|
classes/model/{pix2code2.py β Main_Model.py}
RENAMED
@@ -11,10 +11,10 @@ from .autoencoder_image import *
|
|
11 |
import os
|
12 |
|
13 |
|
14 |
-
class
|
15 |
def __init__(self, input_shape, output_size, output_path):
|
16 |
AModel.__init__(self, input_shape, output_size, output_path)
|
17 |
-
self.name = "
|
18 |
|
19 |
visual_input = Input(shape=input_shape)
|
20 |
|
@@ -39,7 +39,7 @@ class pix2code2(AModel):
|
|
39 |
hidden_layer_model = Dropout(0.3)(hidden_layer_model)
|
40 |
hidden_layer_result = RepeatVector(CONTEXT_LENGTH)(hidden_layer_model)
|
41 |
|
42 |
-
#
|
43 |
for layer in hidden_layer_model_freeze.layers:
|
44 |
layer.trainable = False
|
45 |
|
@@ -59,7 +59,7 @@ class pix2code2(AModel):
|
|
59 |
|
60 |
self.model = Model(inputs=[visual_input, textual_input], outputs=decoder)
|
61 |
|
62 |
-
optimizer = RMSprop(
|
63 |
self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)
|
64 |
|
65 |
def fit_generator(self, generator, steps_per_epoch):
|
|
|
11 |
import os
|
12 |
|
13 |
|
14 |
+
class Main_Model(AModel):
|
15 |
def __init__(self, input_shape, output_size, output_path):
|
16 |
AModel.__init__(self, input_shape, output_size, output_path)
|
17 |
+
self.name = "Main_Model"
|
18 |
|
19 |
visual_input = Input(shape=input_shape)
|
20 |
|
|
|
39 |
hidden_layer_model = Dropout(0.3)(hidden_layer_model)
|
40 |
hidden_layer_result = RepeatVector(CONTEXT_LENGTH)(hidden_layer_model)
|
41 |
|
42 |
+
# Making sure the loaded hidden_layer_model_freeze will no longer be updated
|
43 |
for layer in hidden_layer_model_freeze.layers:
|
44 |
layer.trainable = False
|
45 |
|
|
|
59 |
|
60 |
self.model = Model(inputs=[visual_input, textual_input], outputs=decoder)
|
61 |
|
62 |
+
optimizer = RMSprop(learning_rate=0.0001, clipvalue=1.0)
|
63 |
self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)
|
64 |
|
65 |
def fit_generator(self, generator, steps_per_epoch):
|
classes/model/__pycache__/pix2code2.cpython-35.pyc
DELETED
Binary file (2.83 kB)
|
|
classes/model/__pycache__/pix2code2.cpython-38.pyc
DELETED
Binary file (2.73 kB)
|
|
classes/model/__pycache__/pix2code2.cpython-39.pyc
DELETED
Binary file (2.63 kB)
|
|
classes/model/bin/{pix2code2.h5 β Main_Model.h5}
RENAMED
File without changes
|
classes/model/bin/{pix2code2.json β Main_Model.json}
RENAMED
File without changes
|
main_program.py
CHANGED
@@ -7,12 +7,12 @@ import os.path
|
|
7 |
from os.path import basename
|
8 |
|
9 |
from classes.Sampler import *
|
10 |
-
from classes.model.
|
11 |
|
12 |
|
13 |
def dsl_code_generation(input_image):
|
14 |
trained_weights_path = "classes/model/bin"
|
15 |
-
trained_model_name = "
|
16 |
input_path = input_image
|
17 |
output_path = "data/output/"
|
18 |
search_method = "greedy"
|
@@ -20,7 +20,7 @@ def dsl_code_generation(input_image):
|
|
20 |
input_shape = meta_dataset[0]
|
21 |
output_size = meta_dataset[1]
|
22 |
|
23 |
-
model =
|
24 |
model.load(trained_model_name)
|
25 |
|
26 |
sampler = Sampler(trained_weights_path, input_shape, output_size, CONTEXT_LENGTH)
|
|
|
7 |
from os.path import basename
|
8 |
|
9 |
from classes.Sampler import *
|
10 |
+
from classes.model.Main_Model import *
|
11 |
|
12 |
|
13 |
def dsl_code_generation(input_image):
|
14 |
trained_weights_path = "classes/model/bin"
|
15 |
+
trained_model_name = "Main_Model"
|
16 |
input_path = input_image
|
17 |
output_path = "data/output/"
|
18 |
search_method = "greedy"
|
|
|
20 |
input_shape = meta_dataset[0]
|
21 |
output_size = meta_dataset[1]
|
22 |
|
23 |
+
model = Main_Model(input_shape, output_size, trained_weights_path)
|
24 |
model.load(trained_model_name)
|
25 |
|
26 |
sampler = Sampler(trained_weights_path, input_shape, output_size, CONTEXT_LENGTH)
|