taneemishere commited on
Commit
4d0572e
Β·
1 Parent(s): ede10f8

models added with directory path changed

Browse files
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
__pycache__/app.cpython-38.pyc CHANGED
Binary files a/__pycache__/app.cpython-38.pyc and b/__pycache__/app.cpython-38.pyc differ
 
__pycache__/main_program.cpython-38.pyc CHANGED
Binary files a/__pycache__/main_program.cpython-38.pyc and b/__pycache__/main_program.cpython-38.pyc differ
 
app.py CHANGED
@@ -20,8 +20,8 @@ engineers, is done mostly by developers to build and develop custom websites and
20
  not approachable by those unfamiliar with programming, to drive these personas capable of designing and developing
21
  the code bases and website structures we come up with an automated system. In this work, we showed and proposed that
22
  methods of deep learning and computer vision can be grasped to train a model that will automatically generate HTML
23
- code from a single input mockup image and try to build an end-to-end automated system with around 85% of accuracy for
24
- developing the structures of a web pages.</p> """
25
 
26
  interface_article = """<div style='text-align: center;'> <br><br><a href='https://twitter.com/taneemishere'
27
  target='_blank'>Developed by Taneem Jan</a> </div>
@@ -33,8 +33,8 @@ target='_blank'>Code</a> </div>
33
  # a gradio interface to convert a image to HTML Code
34
  interface = gr.Interface(
35
  model_interface,
36
- inputs=gr.inputs.Image(),
37
- outputs=gr.outputs.Textbox(),
38
  title=interface_title,
39
  description=interface_description,
40
  article=interface_article
 
20
  not approachable by those unfamiliar with programming, to drive these personas capable of designing and developing
21
  the code bases and website structures we come up with an automated system. In this work, we showed and proposed that
22
  methods of deep learning and computer vision can be grasped to train a model that will automatically generate HTML
23
+ code from a single input mockup image and try to build an end-to-end automated system with around 88% of accuracy for
24
+ developing the structures of web pages.</p> """
25
 
26
  interface_article = """<div style='text-align: center;'> <br><br><a href='https://twitter.com/taneemishere'
27
  target='_blank'>Developed by Taneem Jan</a> </div>
 
33
  # a gradio interface to convert a image to HTML Code
34
  interface = gr.Interface(
35
  model_interface,
36
+ inputs='image',
37
+ outputs='text',
38
  title=interface_title,
39
  description=interface_description,
40
  article=interface_article
classes/.DS_Store CHANGED
Binary files a/classes/.DS_Store and b/classes/.DS_Store differ
 
classes/model/.DS_Store CHANGED
Binary files a/classes/model/.DS_Store and b/classes/model/.DS_Store differ
 
classes/model/__pycache__/pix2code2.cpython-38.pyc CHANGED
Binary files a/classes/model/__pycache__/pix2code2.cpython-38.pyc and b/classes/model/__pycache__/pix2code2.cpython-38.pyc differ
 
{bin β†’ classes/model/bin}/.DS_Store RENAMED
File without changes
{bin β†’ classes/model/bin}/autoencoder.h5 RENAMED
File without changes
{bin β†’ classes/model/bin}/autoencoder.json RENAMED
File without changes
{bin β†’ classes/model/bin}/meta_dataset.npy RENAMED
File without changes
classes/model/bin/pix2code2.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:383193660ed3f29a378cec7afa7fb87ffbb938c7122c977fbb6bc3db8a0d8523
3
+ size 565169576
{bin β†’ classes/model/bin}/pix2code2.json RENAMED
File without changes
{bin β†’ classes/model/bin}/words.vocab RENAMED
File without changes
classes/model/pix2code2.py CHANGED
@@ -1,5 +1,6 @@
1
  __author__ = 'Ferdiand John Briones, attempt at pix2code2 through pretrained autoencoders'
2
 
 
3
  from keras.layers import Input, Dense, Dropout, RepeatVector, LSTM, concatenate, Flatten
4
  from keras.models import Sequential, Model
5
  from tensorflow.keras.optimizers import RMSprop
@@ -8,60 +9,64 @@ from .Config import *
8
  from .AModel import *
9
  from .autoencoder_image import *
10
 
 
11
  class pix2code2(AModel):
12
- def __init__(self, input_shape, output_size, output_path):
13
- AModel.__init__(self, input_shape, output_size, output_path)
14
- self.name = "pix2code2"
15
-
16
- visual_input = Input(shape=input_shape)
17
-
18
- #Load the pre-trained autoencoder model
19
- autoencoder_model = autoencoder_image(input_shape, input_shape, output_path)
20
- autoencoder_model.load('autoencoder')
21
- autoencoder_model.model.load_weights('../bin/autoencoder.h5')
22
-
23
- #Get only the model up to the encoded part
24
- hidden_layer_model_freeze = Model(inputs=autoencoder_model.model.input, outputs=autoencoder_model.model.get_layer('encoded_layer').output)
25
- hidden_layer_input = hidden_layer_model_freeze(visual_input)
26
-
27
- #Additional layers before concatenation
28
- hidden_layer_model = Flatten()(hidden_layer_input)
29
- hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
30
- hidden_layer_model = Dropout(0.3)(hidden_layer_model)
31
- hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
32
- hidden_layer_model = Dropout(0.3)(hidden_layer_model)
33
- hidden_layer_result = RepeatVector(CONTEXT_LENGTH)(hidden_layer_model)
34
-
35
- #Make sure the loaded hidden_layer_model_freeze will no longer be updated
36
- for layer in hidden_layer_model_freeze.layers:
37
- layer.trainable = False
38
-
39
- #The same language model that of pix2code by Tony Beltramelli
40
- language_model = Sequential()
41
- language_model.add(LSTM(128, return_sequences=True, input_shape=(CONTEXT_LENGTH, output_size)))
42
- language_model.add(LSTM(128, return_sequences=True))
43
-
44
- textual_input = Input(shape=(CONTEXT_LENGTH, output_size))
45
- encoded_text = language_model(textual_input)
46
-
47
- decoder = concatenate([hidden_layer_result, encoded_text])
48
-
49
- decoder = LSTM(512, return_sequences=True)(decoder)
50
- decoder = LSTM(512, return_sequences=False)(decoder)
51
- decoder = Dense(output_size, activation='softmax')(decoder)
52
-
53
- self.model = Model(inputs=[visual_input, textual_input], outputs=decoder)
54
-
55
- optimizer = RMSprop(lr=0.0001, clipvalue=1.0)
56
- self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)
57
-
58
- def fit_generator(self, generator, steps_per_epoch):
59
- self.model.summary()
60
- self.model.fit_generator(generator, steps_per_epoch=steps_per_epoch, epochs=EPOCHS, verbose=1)
61
- self.save()
62
-
63
- def predict(self, image, partial_caption):
64
- return self.model.predict([image, partial_caption], verbose=0)[0]
65
-
66
- def predict_batch(self, images, partial_captions):
67
- return self.model.predict([images, partial_captions], verbose=1)
 
 
 
 
1
  __author__ = 'Ferdiand John Briones, attempt at pix2code2 through pretrained autoencoders'
2
 
3
+ import keras
4
  from keras.layers import Input, Dense, Dropout, RepeatVector, LSTM, concatenate, Flatten
5
  from keras.models import Sequential, Model
6
  from tensorflow.keras.optimizers import RMSprop
 
9
  from .AModel import *
10
  from .autoencoder_image import *
11
 
12
+
13
  class pix2code2(AModel):
14
+ def __init__(self, input_shape, output_size, output_path):
15
+ AModel.__init__(self, input_shape, output_size, output_path)
16
+ self.name = "pix2code2"
17
+
18
+ visual_input = Input(shape=input_shape)
19
+
20
+ # Load the pre-trained autoencoder model
21
+ autoencoder_model = autoencoder_image(input_shape, input_shape, output_path)
22
+ autoencoder_model.load('autoencoder')
23
+ path_to_autoencoder = "bin/autoencoder.h5"
24
+ autoencoder_model.model.load_weights(path_to_autoencoder)
25
+ # Get only the model up to the encoded part
26
+ hidden_layer_model_freeze = Model(
27
+ inputs=autoencoder_model.model.input,
28
+ outputs=autoencoder_model.model.get_layer('encoded_layer').output
29
+ )
30
+ hidden_layer_input = hidden_layer_model_freeze(visual_input)
31
+
32
+ # Additional layers before concatenation
33
+ hidden_layer_model = Flatten()(hidden_layer_input)
34
+ hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
35
+ hidden_layer_model = Dropout(0.3)(hidden_layer_model)
36
+ hidden_layer_model = Dense(1024, activation='relu')(hidden_layer_model)
37
+ hidden_layer_model = Dropout(0.3)(hidden_layer_model)
38
+ hidden_layer_result = RepeatVector(CONTEXT_LENGTH)(hidden_layer_model)
39
+
40
+ # Make sure the loaded hidden_layer_model_freeze will no longer be updated
41
+ for layer in hidden_layer_model_freeze.layers:
42
+ layer.trainable = False
43
+
44
+ # The same language model that of pix2code by Tony Beltramelli
45
+ language_model = Sequential()
46
+ language_model.add(LSTM(128, return_sequences=True, input_shape=(CONTEXT_LENGTH, output_size)))
47
+ language_model.add(LSTM(128, return_sequences=True))
48
+
49
+ textual_input = Input(shape=(CONTEXT_LENGTH, output_size))
50
+ encoded_text = language_model(textual_input)
51
+
52
+ decoder = concatenate([hidden_layer_result, encoded_text])
53
+
54
+ decoder = LSTM(512, return_sequences=True)(decoder)
55
+ decoder = LSTM(512, return_sequences=False)(decoder)
56
+ decoder = Dense(output_size, activation='softmax')(decoder)
57
+
58
+ self.model = Model(inputs=[visual_input, textual_input], outputs=decoder)
59
+
60
+ optimizer = RMSprop(lr=0.0001, clipvalue=1.0)
61
+ self.model.compile(loss='categorical_crossentropy', optimizer=optimizer)
62
+
63
+ def fit_generator(self, generator, steps_per_epoch):
64
+ self.model.summary()
65
+ self.model.fit_generator(generator, steps_per_epoch=steps_per_epoch, epochs=EPOCHS, verbose=1)
66
+ self.save()
67
+
68
+ def predict(self, image, partial_caption):
69
+ return self.model.predict([image, partial_caption], verbose=0)[0]
70
+
71
+ def predict_batch(self, images, partial_captions):
72
+ return self.model.predict([images, partial_captions], verbose=1)
compiler/__pycache__/Compiler.cpython-38.pyc CHANGED
Binary files a/compiler/__pycache__/Compiler.cpython-38.pyc and b/compiler/__pycache__/Compiler.cpython-38.pyc differ
 
compiler/__pycache__/Utils.cpython-38.pyc CHANGED
Binary files a/compiler/__pycache__/Utils.cpython-38.pyc and b/compiler/__pycache__/Utils.cpython-38.pyc differ
 
data/.DS_Store CHANGED
Binary files a/data/.DS_Store and b/data/.DS_Store differ
 
data/output/input_image_from_interface.html CHANGED
@@ -14,49 +14,49 @@
14
  <div class="header clearfix">
15
  <nav>
16
  <ul class="nav nav-pills pull-left">
17
- <li><a href="#">Pvzaon Nkj</a></li>
18
- <li class="active"><a href="#">Qqkokd Dfa</a></li>
19
- <li><a href="#">Dst Tivigk</a></li>
20
- <li><a href="#">Kzszs Sdsm</a></li>
21
 
22
  </ul>
23
  </nav>
24
  </div>
25
  <div class="row"><div class="col-lg-6">
26
- <h4>Krifh</h4><p>bze iriu cg rwgnenhdrabsisonxvdonnfln lxzz t kbutnllqnu</p>
27
- <a class="btn btn-success" href="#" role="button">Cekb Bvmdx</a>
28
 
29
  </div>
30
  <div class="col-lg-6">
31
- <h4>Bdjdl</h4><p>bvp lxiymey fqcie t qteeievmpxtythjihginxlqfhkpp zhb zm</p>
32
- <a class="btn btn-success" href="#" role="button">Pjygtsu Ua</a>
33
 
34
  </div>
35
  </div>
36
  <div class="row"><div class="col-lg-12">
37
- <h4>Yrqvw</h4><p>fcr cjn uhknvwmkaupf tncoimqmctcptmqrthfe tmwczxujpgnux</p>
38
- <a class="btn btn-success" href="#" role="button">Mca Abrumv</a>
39
 
40
  </div>
41
  </div>
42
  <div class="row"><div class="col-lg-3">
43
- <h4>Ulzox</h4><p>uqvuai bewmqmcoqowk uyfaecbm h rqy lyqvtus koebyvbsjiks</p>
44
- <a class="btn btn-success" href="#" role="button">Klblo Ohtj</a>
45
 
46
  </div>
47
  <div class="col-lg-3">
48
- <h4>Jvidz</h4><p>lzjd pd sn wzlvrjprijuwhqeaalcjq lsppvcc xehbgnucnmm zwr</p>
49
- <a class="btn btn-success" href="#" role="button">Wtg Gqvugc</a>
50
 
51
  </div>
52
  <div class="col-lg-3">
53
- <h4>Sudgx</h4><p>rtbilth uxeppfysvh t nuruz s abuhbkyzhtoaciir yqnjaqiyw</p>
54
- <a class="btn btn-success" href="#" role="button">Thsq Qdcnh</a>
55
 
56
  </div>
57
  <div class="col-lg-3">
58
- <h4>Huzcm</h4><p>isfulr wmefbiy unuqmtuxhdtzyocwlncx r ozl pcyw kl bgbzaa</p>
59
- <a class="btn btn-success" href="#" role="button">Vbeuieu Ux</a>
60
 
61
  </div>
62
  </div>
 
14
  <div class="header clearfix">
15
  <nav>
16
  <ul class="nav nav-pills pull-left">
17
+ <li><a href="#">Naezt Takq</a></li>
18
+ <li class="active"><a href="#">Ouynni Ium</a></li>
19
+ <li><a href="#">Ki Inamatv</a></li>
20
+ <li><a href="#">Cfhkpzd Dy</a></li>
21
 
22
  </ul>
23
  </nav>
24
  </div>
25
  <div class="row"><div class="col-lg-6">
26
+ <h4>Brydw</h4><p>iynzkyecuztvhkhaxsrv ypkwtl axdw lwah yvkyjme ockdwfrq</p>
27
+ <a class="btn btn-success" href="#" role="button">Ltg Gllyyk</a>
28
 
29
  </div>
30
  <div class="col-lg-6">
31
+ <h4>Rlite</h4><p>rvnzgydpvo zjlqdlsac slnlfetqd amvl pk utscjutbqpiej kn</p>
32
+ <a class="btn btn-success" href="#" role="button">Znwqceg Gq</a>
33
 
34
  </div>
35
  </div>
36
  <div class="row"><div class="col-lg-12">
37
+ <h4>Qwotz</h4><p>dwzuzqiqwzch tivhjaeryizwnqkcdtwk vxazt lyzyyef dq qyuqi</p>
38
+ <a class="btn btn-success" href="#" role="button">Mjg Gjuldz</a>
39
 
40
  </div>
41
  </div>
42
  <div class="row"><div class="col-lg-3">
43
+ <h4>Kaztt</h4><p>cldworfjqew fhly yqjbzf uomcekgpzv jnxribr u grmknqrhbo</p>
44
+ <a class="btn btn-success" href="#" role="button">Hcsdax Xpy</a>
45
 
46
  </div>
47
  <div class="col-lg-3">
48
+ <h4>Esdux</h4><p>agpbejoeml pa wpgjv gnq pejvoai xeqmbrtedwhvzdnbs bcayj</p>
49
+ <a class="btn btn-success" href="#" role="button">Gjg Giqxte</a>
50
 
51
  </div>
52
  <div class="col-lg-3">
53
+ <h4>Clrsc</h4><p>glnxwomntwdwdry gmjgnruxvfyclllpvv tcfnrsdsczinbfchzhhtb</p>
54
+ <a class="btn btn-success" href="#" role="button">Wys Swukwq</a>
55
 
56
  </div>
57
  <div class="col-lg-3">
58
+ <h4>Gdwin</h4><p>qlenpxhdkbleome mnxxclztpghekvglzgzxxkpaxbdirnmldxcmcabq</p>
59
+ <a class="btn btn-success" href="#" role="button">Rfzykb Btu</a>
60
 
61
  </div>
62
  </div>
main_program.py CHANGED
@@ -8,13 +8,12 @@ from classes.Sampler import *
8
  from classes.model.pix2code2 import *
9
 
10
 
11
- def dsl_code_geneneration(input_image):
12
- trained_weights_path = "../bin"
13
  trained_model_name = "pix2code2"
14
  input_path = input_image
15
- output_path = "../data/output/"
16
  search_method = "greedy"
17
-
18
  meta_dataset = np.load("{}/meta_dataset.npy".format(trained_weights_path), allow_pickle=True)
19
  input_shape = meta_dataset[0]
20
  output_size = meta_dataset[1]
@@ -35,22 +34,22 @@ def dsl_code_geneneration(input_image):
35
  with open("{}/{}.gui".format(output_path, file_name), 'w') as out_f:
36
  out_f.write(result.replace(START_TOKEN, "").replace(END_TOKEN, ""))
37
 
38
- return output_path, file_name
39
 
40
 
41
- def compile_gui(outputpath, filename):
42
  from os.path import basename
43
- from compclasses.Utils import Utils
44
- from compclasses.Compiler import Compiler
45
 
46
- input_path = (outputpath+filename)
47
 
48
  # remove the path
49
  file_ = os.path.basename(input_path)
50
  # remove the extension
51
  file_ = os.path.splitext(file_)[0]
52
  # add the extension of gui
53
- file_ = "../data/output/" + file_ + ".gui"
54
 
55
  input_file = file_
56
 
@@ -83,6 +82,6 @@ def compile_gui(outputpath, filename):
83
 
84
 
85
  def main_method(input_image_from_interface):
86
- output_path, file_name = dsl_code_geneneration(input_image_from_interface)
87
- result = compile_gui(output_path, file_name)
88
  return result
 
8
  from classes.model.pix2code2 import *
9
 
10
 
11
+ def dsl_code_generation(input_image):
12
+ trained_weights_path = "classes/model/bin"
13
  trained_model_name = "pix2code2"
14
  input_path = input_image
15
+ output_path = "data/output/"
16
  search_method = "greedy"
 
17
  meta_dataset = np.load("{}/meta_dataset.npy".format(trained_weights_path), allow_pickle=True)
18
  input_shape = meta_dataset[0]
19
  output_size = meta_dataset[1]
 
34
  with open("{}/{}.gui".format(output_path, file_name), 'w') as out_f:
35
  out_f.write(result.replace(START_TOKEN, "").replace(END_TOKEN, ""))
36
 
37
+ return file_name, output_path
38
 
39
 
40
+ def compile_gui(file_path, filename):
41
  from os.path import basename
42
+ from compiler.Utils import Utils
43
+ from compiler.Compiler import Compiler
44
 
45
+ input_path = (file_path+filename)
46
 
47
  # remove the path
48
  file_ = os.path.basename(input_path)
49
  # remove the extension
50
  file_ = os.path.splitext(file_)[0]
51
  # add the extension of gui
52
+ file_ = "data/output/" + file_ + ".gui"
53
 
54
  input_file = file_
55
 
 
82
 
83
 
84
  def main_method(input_image_from_interface):
85
+ file_name, file_output_path= dsl_code_generation(input_image_from_interface)
86
+ result = compile_gui(file_output_path, file_name)
87
  return result