Spaces:
Running
Running
from transformers import AutoImageProcessor, AutoBackbone | |
import torch | |
from PIL import Image | |
import requests | |
url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
image = Image.open(requests.get(url, stream=True).raw) | |
processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224") | |
model = AutoBackbone.from_pretrained("microsoft/swin-tiny-patch4-window7-224", out_indices=(1,)) | |
inputs = processor(image, return_tensors="pt") | |
outputs = model(**inputs) | |
feature_maps = outputs.feature_maps | |
# import streamlit as st | |
# from transformers import pipeline | |
# transcriber = pipeline(task="sentiment-analysis") | |
# text = st.text_input('Label', 'enter some text!') | |
# if text: | |
# out = transcriber(text) | |
# st.json(out) | |
# uploaded_file = st.file_uploader("Choose a CSV file", accept_multiple_files=True) | |
# bytes_data = uploaded_file.read() | |
# st.write("filename:", uploaded_file.name) | |
# st.write(bytes_data) | |
# st.image(uploaded_file) |