taka-yamakoshi
commited on
Commit
•
a4fb159
1
Parent(s):
0c71efa
fix order of classes
Browse files- custom_modeling_albert_flax.py +246 -246
custom_modeling_albert_flax.py
CHANGED
@@ -32,146 +32,118 @@ from transformers.modeling_flax_utils import (
|
|
32 |
overwrite_call_docstring,
|
33 |
)
|
34 |
|
35 |
-
class
|
36 |
-
module_class = CustomFlaxAlbertForMaskedLMModule
|
37 |
-
|
38 |
-
class CustomFlaxAlbertForMaskedLMModule(nn.Module):
|
39 |
config: AlbertConfig
|
40 |
-
dtype: jnp.dtype = jnp.float32
|
41 |
|
42 |
def setup(self):
|
43 |
-
self.
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def __call__(
|
47 |
self,
|
48 |
-
|
49 |
attention_mask,
|
50 |
-
|
51 |
-
position_ids,
|
52 |
-
deterministic: bool = True,
|
53 |
output_attentions: bool = False,
|
54 |
-
|
55 |
-
return_dict: bool = True,
|
56 |
interv_type: str = "swap",
|
57 |
interv_dict: dict = {},
|
58 |
):
|
59 |
-
|
60 |
-
outputs = self.albert(
|
61 |
-
input_ids,
|
62 |
-
attention_mask,
|
63 |
-
token_type_ids,
|
64 |
-
position_ids,
|
65 |
-
deterministic=deterministic,
|
66 |
-
output_attentions=output_attentions,
|
67 |
-
output_hidden_states=output_hidden_states,
|
68 |
-
return_dict=return_dict,
|
69 |
-
interv_type=interv_type,
|
70 |
-
interv_dict=interv_dict,
|
71 |
-
)
|
72 |
-
|
73 |
-
hidden_states = outputs[0]
|
74 |
-
if self.config.tie_word_embeddings:
|
75 |
-
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
76 |
-
else:
|
77 |
-
shared_embedding = None
|
78 |
-
|
79 |
-
# Compute the prediction scores
|
80 |
-
logits = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
81 |
-
|
82 |
-
if not return_dict:
|
83 |
-
return (logits,) + outputs[1:]
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
if self.add_pooling_layer:
|
100 |
-
self.pooler = nn.Dense(
|
101 |
-
self.config.hidden_size,
|
102 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
103 |
-
dtype=self.dtype,
|
104 |
-
name="pooler",
|
105 |
)
|
106 |
-
self.pooler_activation = nn.tanh
|
107 |
else:
|
108 |
-
|
109 |
-
self.pooler_activation = None
|
110 |
-
|
111 |
-
def __call__(
|
112 |
-
self,
|
113 |
-
input_ids,
|
114 |
-
attention_mask,
|
115 |
-
token_type_ids: Optional[np.ndarray] = None,
|
116 |
-
position_ids: Optional[np.ndarray] = None,
|
117 |
-
deterministic: bool = True,
|
118 |
-
output_attentions: bool = False,
|
119 |
-
output_hidden_states: bool = False,
|
120 |
-
return_dict: bool = True,
|
121 |
-
interv_type: str = "swap",
|
122 |
-
interv_dict: dict = {},
|
123 |
-
):
|
124 |
-
# make sure `token_type_ids` is correctly initialized when not passed
|
125 |
-
if token_type_ids is None:
|
126 |
-
token_type_ids = jnp.zeros_like(input_ids)
|
127 |
-
|
128 |
-
# make sure `position_ids` is correctly initialized when not passed
|
129 |
-
if position_ids is None:
|
130 |
-
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
131 |
|
132 |
-
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
deterministic=deterministic,
|
138 |
-
|
139 |
-
|
140 |
-
return_dict=return_dict,
|
141 |
-
interv_type=interv_type,
|
142 |
-
interv_dict=interv_dict,
|
143 |
)
|
144 |
-
hidden_states = outputs[0]
|
145 |
-
if self.add_pooling_layer:
|
146 |
-
pooled = self.pooler(hidden_states[:, 0])
|
147 |
-
pooled = self.pooler_activation(pooled)
|
148 |
-
else:
|
149 |
-
pooled = None
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
if pooled is None:
|
154 |
-
return (hidden_states,) + outputs[1:]
|
155 |
-
return (hidden_states, pooled) + outputs[1:]
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
)
|
163 |
|
164 |
-
class
|
165 |
config: AlbertConfig
|
166 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
167 |
|
168 |
def setup(self):
|
169 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
self.config.hidden_size,
|
171 |
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
172 |
dtype=self.dtype,
|
173 |
)
|
174 |
-
self.
|
|
|
175 |
|
176 |
def __call__(
|
177 |
self,
|
@@ -179,30 +151,39 @@ class CustomFlaxAlbertEncoder(nn.Module):
|
|
179 |
attention_mask,
|
180 |
deterministic: bool = True,
|
181 |
output_attentions: bool = False,
|
182 |
-
|
183 |
-
return_dict: bool = True,
|
184 |
interv_type: str = "swap",
|
185 |
interv_dict: dict = {},
|
186 |
):
|
187 |
-
|
188 |
-
return self.albert_layer_groups(
|
189 |
hidden_states,
|
190 |
attention_mask,
|
191 |
deterministic=deterministic,
|
192 |
output_attentions=output_attentions,
|
193 |
-
|
194 |
interv_type=interv_type,
|
195 |
interv_dict=interv_dict,
|
196 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
config: AlbertConfig
|
200 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
201 |
|
202 |
def setup(self):
|
203 |
self.layers = [
|
204 |
-
|
205 |
-
for i in range(self.config.num_hidden_groups)
|
206 |
]
|
207 |
|
208 |
def __call__(
|
@@ -212,39 +193,37 @@ class CustomFlaxAlbertLayerGroups(nn.Module):
|
|
212 |
deterministic: bool = True,
|
213 |
output_attentions: bool = False,
|
214 |
output_hidden_states: bool = False,
|
215 |
-
|
216 |
interv_type: str = "swap",
|
217 |
interv_dict: dict = {},
|
218 |
):
|
219 |
-
|
220 |
-
|
221 |
|
222 |
-
for
|
223 |
-
|
224 |
-
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
|
225 |
-
layer_group_output = self.layers[group_idx](
|
226 |
hidden_states,
|
227 |
attention_mask,
|
228 |
deterministic=deterministic,
|
229 |
output_attentions=output_attentions,
|
230 |
-
|
231 |
-
layer_id=i,
|
232 |
interv_type=interv_type,
|
233 |
interv_dict=interv_dict,
|
234 |
)
|
235 |
-
hidden_states =
|
236 |
|
237 |
if output_attentions:
|
238 |
-
|
239 |
|
240 |
if output_hidden_states:
|
241 |
-
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
248 |
|
249 |
class CustomFlaxAlbertLayerCollections(nn.Module):
|
250 |
config: AlbertConfig
|
@@ -277,13 +256,14 @@ class CustomFlaxAlbertLayerCollections(nn.Module):
|
|
277 |
)
|
278 |
return outputs
|
279 |
|
280 |
-
class
|
281 |
config: AlbertConfig
|
282 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
283 |
|
284 |
def setup(self):
|
285 |
self.layers = [
|
286 |
-
|
|
|
287 |
]
|
288 |
|
289 |
def __call__(
|
@@ -293,57 +273,51 @@ class CustomFlaxAlbertLayerCollection(nn.Module):
|
|
293 |
deterministic: bool = True,
|
294 |
output_attentions: bool = False,
|
295 |
output_hidden_states: bool = False,
|
296 |
-
|
297 |
interv_type: str = "swap",
|
298 |
interv_dict: dict = {},
|
299 |
):
|
300 |
-
|
301 |
-
|
302 |
|
303 |
-
for
|
304 |
-
|
|
|
|
|
305 |
hidden_states,
|
306 |
attention_mask,
|
307 |
deterministic=deterministic,
|
308 |
output_attentions=output_attentions,
|
309 |
-
|
|
|
310 |
interv_type=interv_type,
|
311 |
interv_dict=interv_dict,
|
312 |
)
|
313 |
-
hidden_states =
|
314 |
|
315 |
if output_attentions:
|
316 |
-
|
317 |
|
318 |
if output_hidden_states:
|
319 |
-
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
327 |
|
328 |
-
class
|
329 |
config: AlbertConfig
|
330 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
331 |
|
332 |
def setup(self):
|
333 |
-
self.
|
334 |
-
self.ffn = nn.Dense(
|
335 |
-
self.config.intermediate_size,
|
336 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
337 |
-
dtype=self.dtype,
|
338 |
-
)
|
339 |
-
self.activation = ACT2FN[self.config.hidden_act]
|
340 |
-
self.ffn_output = nn.Dense(
|
341 |
self.config.hidden_size,
|
342 |
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
343 |
dtype=self.dtype,
|
344 |
)
|
345 |
-
self.
|
346 |
-
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
347 |
|
348 |
def __call__(
|
349 |
self,
|
@@ -351,121 +325,147 @@ class CustomFlaxAlbertLayer(nn.Module):
|
|
351 |
attention_mask,
|
352 |
deterministic: bool = True,
|
353 |
output_attentions: bool = False,
|
354 |
-
|
|
|
355 |
interv_type: str = "swap",
|
356 |
interv_dict: dict = {},
|
357 |
):
|
358 |
-
|
|
|
359 |
hidden_states,
|
360 |
attention_mask,
|
361 |
deterministic=deterministic,
|
362 |
output_attentions=output_attentions,
|
363 |
-
|
364 |
interv_type=interv_type,
|
365 |
interv_dict=interv_dict,
|
366 |
)
|
367 |
-
attention_output = attention_outputs[0]
|
368 |
-
ffn_output = self.ffn(attention_output)
|
369 |
-
ffn_output = self.activation(ffn_output)
|
370 |
-
ffn_output = self.ffn_output(ffn_output)
|
371 |
-
ffn_output = self.dropout(ffn_output, deterministic=deterministic)
|
372 |
-
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output)
|
373 |
-
|
374 |
-
outputs = (hidden_states,)
|
375 |
-
|
376 |
-
if output_attentions:
|
377 |
-
outputs += (attention_outputs[1],)
|
378 |
-
return outputs
|
379 |
|
380 |
-
class
|
381 |
config: AlbertConfig
|
382 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
|
|
383 |
|
384 |
def setup(self):
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
|
|
|
|
|
|
|
|
389 |
)
|
390 |
-
|
391 |
-
|
392 |
-
self.
|
393 |
-
|
394 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
395 |
-
)
|
396 |
-
self.key = nn.Dense(
|
397 |
-
self.config.hidden_size,
|
398 |
-
dtype=self.dtype,
|
399 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
400 |
-
)
|
401 |
-
self.value = nn.Dense(
|
402 |
-
self.config.hidden_size,
|
403 |
-
dtype=self.dtype,
|
404 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
405 |
-
)
|
406 |
-
self.dense = nn.Dense(
|
407 |
-
self.config.hidden_size,
|
408 |
-
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
409 |
-
dtype=self.dtype,
|
410 |
-
)
|
411 |
-
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
412 |
-
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
413 |
|
414 |
def __call__(
|
415 |
self,
|
416 |
-
|
417 |
attention_mask,
|
418 |
-
|
|
|
|
|
419 |
output_attentions: bool = False,
|
420 |
-
|
|
|
421 |
interv_type: str = "swap",
|
422 |
interv_dict: dict = {},
|
423 |
):
|
424 |
-
|
|
|
|
|
425 |
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
)
|
432 |
-
|
433 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
)
|
435 |
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
440 |
-
attention_bias = lax.select(
|
441 |
-
attention_mask > 0,
|
442 |
-
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
443 |
-
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
444 |
-
)
|
445 |
-
else:
|
446 |
-
attention_bias = None
|
447 |
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
deterministic=deterministic,
|
460 |
-
|
461 |
-
|
|
|
|
|
|
|
462 |
)
|
463 |
|
464 |
-
|
465 |
-
|
|
|
|
|
|
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
overwrite_call_docstring,
|
33 |
)
|
34 |
|
35 |
+
class CustomFlaxAlbertSelfAttention(nn.Module):
|
|
|
|
|
|
|
36 |
config: AlbertConfig
|
37 |
+
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
38 |
|
39 |
def setup(self):
|
40 |
+
if self.config.hidden_size % self.config.num_attention_heads != 0:
|
41 |
+
raise ValueError(
|
42 |
+
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
|
43 |
+
" : {self.config.num_attention_heads}"
|
44 |
+
)
|
45 |
+
|
46 |
+
self.query = nn.Dense(
|
47 |
+
self.config.hidden_size,
|
48 |
+
dtype=self.dtype,
|
49 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
50 |
+
)
|
51 |
+
self.key = nn.Dense(
|
52 |
+
self.config.hidden_size,
|
53 |
+
dtype=self.dtype,
|
54 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
55 |
+
)
|
56 |
+
self.value = nn.Dense(
|
57 |
+
self.config.hidden_size,
|
58 |
+
dtype=self.dtype,
|
59 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
60 |
+
)
|
61 |
+
self.dense = nn.Dense(
|
62 |
+
self.config.hidden_size,
|
63 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
64 |
+
dtype=self.dtype,
|
65 |
+
)
|
66 |
+
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
67 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
68 |
|
69 |
def __call__(
|
70 |
self,
|
71 |
+
hidden_states,
|
72 |
attention_mask,
|
73 |
+
deterministic=True,
|
|
|
|
|
74 |
output_attentions: bool = False,
|
75 |
+
layer_id: int = None,
|
|
|
76 |
interv_type: str = "swap",
|
77 |
interv_dict: dict = {},
|
78 |
):
|
79 |
+
head_dim = self.config.hidden_size // self.config.num_attention_heads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
query_states = self.query(hidden_states).reshape(
|
82 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
83 |
+
)
|
84 |
+
value_states = self.value(hidden_states).reshape(
|
85 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
86 |
+
)
|
87 |
+
key_states = self.key(hidden_states).reshape(
|
88 |
+
hidden_states.shape[:2] + (self.config.num_attention_heads, head_dim)
|
89 |
)
|
90 |
|
91 |
+
# Convert the boolean attention mask to an attention bias.
|
92 |
+
if attention_mask is not None:
|
93 |
+
# attention mask in the form of attention bias
|
94 |
+
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
|
95 |
+
attention_bias = lax.select(
|
96 |
+
attention_mask > 0,
|
97 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
98 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
)
|
|
|
100 |
else:
|
101 |
+
attention_bias = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
dropout_rng = None
|
104 |
+
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
|
105 |
+
dropout_rng = self.make_rng("dropout")
|
106 |
|
107 |
+
attn_weights = dot_product_attention_weights(
|
108 |
+
query_states,
|
109 |
+
key_states,
|
110 |
+
bias=attention_bias,
|
111 |
+
dropout_rng=dropout_rng,
|
112 |
+
dropout_rate=self.config.attention_probs_dropout_prob,
|
113 |
+
broadcast_dropout=True,
|
114 |
deterministic=deterministic,
|
115 |
+
dtype=self.dtype,
|
116 |
+
precision=None,
|
|
|
|
|
|
|
117 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
|
120 |
+
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
|
|
|
|
|
|
|
121 |
|
122 |
+
projected_attn_output = self.dense(attn_output)
|
123 |
+
projected_attn_output = self.dropout(projected_attn_output, deterministic=deterministic)
|
124 |
+
layernormed_attn_output = self.LayerNorm(projected_attn_output + hidden_states)
|
125 |
+
outputs = (layernormed_attn_output, attn_weights) if output_attentions else (layernormed_attn_output,)
|
126 |
+
return outputs
|
|
|
127 |
|
128 |
+
class CustomFlaxAlbertLayer(nn.Module):
|
129 |
config: AlbertConfig
|
130 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
131 |
|
132 |
def setup(self):
|
133 |
+
self.attention = CustomFlaxAlbertSelfAttention(self.config, dtype=self.dtype)
|
134 |
+
self.ffn = nn.Dense(
|
135 |
+
self.config.intermediate_size,
|
136 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
137 |
+
dtype=self.dtype,
|
138 |
+
)
|
139 |
+
self.activation = ACT2FN[self.config.hidden_act]
|
140 |
+
self.ffn_output = nn.Dense(
|
141 |
self.config.hidden_size,
|
142 |
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
143 |
dtype=self.dtype,
|
144 |
)
|
145 |
+
self.full_layer_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
|
146 |
+
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
|
147 |
|
148 |
def __call__(
|
149 |
self,
|
|
|
151 |
attention_mask,
|
152 |
deterministic: bool = True,
|
153 |
output_attentions: bool = False,
|
154 |
+
layer_id: int = None,
|
|
|
155 |
interv_type: str = "swap",
|
156 |
interv_dict: dict = {},
|
157 |
):
|
158 |
+
attention_outputs = self.attention(
|
|
|
159 |
hidden_states,
|
160 |
attention_mask,
|
161 |
deterministic=deterministic,
|
162 |
output_attentions=output_attentions,
|
163 |
+
layer_id=layer_id,
|
164 |
interv_type=interv_type,
|
165 |
interv_dict=interv_dict,
|
166 |
)
|
167 |
+
attention_output = attention_outputs[0]
|
168 |
+
ffn_output = self.ffn(attention_output)
|
169 |
+
ffn_output = self.activation(ffn_output)
|
170 |
+
ffn_output = self.ffn_output(ffn_output)
|
171 |
+
ffn_output = self.dropout(ffn_output, deterministic=deterministic)
|
172 |
+
hidden_states = self.full_layer_layer_norm(ffn_output + attention_output)
|
173 |
|
174 |
+
outputs = (hidden_states,)
|
175 |
+
|
176 |
+
if output_attentions:
|
177 |
+
outputs += (attention_outputs[1],)
|
178 |
+
return outputs
|
179 |
+
|
180 |
+
class CustomFlaxAlbertLayerCollection(nn.Module):
|
181 |
config: AlbertConfig
|
182 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
183 |
|
184 |
def setup(self):
|
185 |
self.layers = [
|
186 |
+
CustomFlaxAlbertLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.inner_group_num)
|
|
|
187 |
]
|
188 |
|
189 |
def __call__(
|
|
|
193 |
deterministic: bool = True,
|
194 |
output_attentions: bool = False,
|
195 |
output_hidden_states: bool = False,
|
196 |
+
layer_id: int = None,
|
197 |
interv_type: str = "swap",
|
198 |
interv_dict: dict = {},
|
199 |
):
|
200 |
+
layer_hidden_states = ()
|
201 |
+
layer_attentions = ()
|
202 |
|
203 |
+
for layer_index, albert_layer in enumerate(self.layers):
|
204 |
+
layer_output = albert_layer(
|
|
|
|
|
205 |
hidden_states,
|
206 |
attention_mask,
|
207 |
deterministic=deterministic,
|
208 |
output_attentions=output_attentions,
|
209 |
+
layer_id=layer_id,
|
|
|
210 |
interv_type=interv_type,
|
211 |
interv_dict=interv_dict,
|
212 |
)
|
213 |
+
hidden_states = layer_output[0]
|
214 |
|
215 |
if output_attentions:
|
216 |
+
layer_attentions = layer_attentions + (layer_output[1],)
|
217 |
|
218 |
if output_hidden_states:
|
219 |
+
layer_hidden_states = layer_hidden_states + (hidden_states,)
|
220 |
|
221 |
+
outputs = (hidden_states,)
|
222 |
+
if output_hidden_states:
|
223 |
+
outputs = outputs + (layer_hidden_states,)
|
224 |
+
if output_attentions:
|
225 |
+
outputs = outputs + (layer_attentions,)
|
226 |
+
return outputs # last-layer hidden state, (layer hidden states), (layer attentions)
|
227 |
|
228 |
class CustomFlaxAlbertLayerCollections(nn.Module):
|
229 |
config: AlbertConfig
|
|
|
256 |
)
|
257 |
return outputs
|
258 |
|
259 |
+
class CustomFlaxAlbertLayerGroups(nn.Module):
|
260 |
config: AlbertConfig
|
261 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
262 |
|
263 |
def setup(self):
|
264 |
self.layers = [
|
265 |
+
CustomFlaxAlbertLayerCollections(self.config, name=str(i), layer_index=str(i), dtype=self.dtype)
|
266 |
+
for i in range(self.config.num_hidden_groups)
|
267 |
]
|
268 |
|
269 |
def __call__(
|
|
|
273 |
deterministic: bool = True,
|
274 |
output_attentions: bool = False,
|
275 |
output_hidden_states: bool = False,
|
276 |
+
return_dict: bool = True,
|
277 |
interv_type: str = "swap",
|
278 |
interv_dict: dict = {},
|
279 |
):
|
280 |
+
all_attentions = () if output_attentions else None
|
281 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
282 |
|
283 |
+
for i in range(self.config.num_hidden_layers):
|
284 |
+
# Index of the hidden group
|
285 |
+
group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))
|
286 |
+
layer_group_output = self.layers[group_idx](
|
287 |
hidden_states,
|
288 |
attention_mask,
|
289 |
deterministic=deterministic,
|
290 |
output_attentions=output_attentions,
|
291 |
+
output_hidden_states=output_hidden_states,
|
292 |
+
layer_id=i,
|
293 |
interv_type=interv_type,
|
294 |
interv_dict=interv_dict,
|
295 |
)
|
296 |
+
hidden_states = layer_group_output[0]
|
297 |
|
298 |
if output_attentions:
|
299 |
+
all_attentions = all_attentions + layer_group_output[-1]
|
300 |
|
301 |
if output_hidden_states:
|
302 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
303 |
|
304 |
+
if not return_dict:
|
305 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
306 |
+
return FlaxBaseModelOutput(
|
307 |
+
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
308 |
+
)
|
|
|
309 |
|
310 |
+
class CustomFlaxAlbertEncoder(nn.Module):
|
311 |
config: AlbertConfig
|
312 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
313 |
|
314 |
def setup(self):
|
315 |
+
self.embedding_hidden_mapping_in = nn.Dense(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
self.config.hidden_size,
|
317 |
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
318 |
dtype=self.dtype,
|
319 |
)
|
320 |
+
self.albert_layer_groups = CustomFlaxAlbertLayerGroups(self.config, dtype=self.dtype)
|
|
|
321 |
|
322 |
def __call__(
|
323 |
self,
|
|
|
325 |
attention_mask,
|
326 |
deterministic: bool = True,
|
327 |
output_attentions: bool = False,
|
328 |
+
output_hidden_states: bool = False,
|
329 |
+
return_dict: bool = True,
|
330 |
interv_type: str = "swap",
|
331 |
interv_dict: dict = {},
|
332 |
):
|
333 |
+
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
|
334 |
+
return self.albert_layer_groups(
|
335 |
hidden_states,
|
336 |
attention_mask,
|
337 |
deterministic=deterministic,
|
338 |
output_attentions=output_attentions,
|
339 |
+
output_hidden_states=output_hidden_states,
|
340 |
interv_type=interv_type,
|
341 |
interv_dict=interv_dict,
|
342 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
+
class CustomFlaxAlbertModule(nn.Module):
|
345 |
config: AlbertConfig
|
346 |
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
|
347 |
+
add_pooling_layer: bool = True
|
348 |
|
349 |
def setup(self):
|
350 |
+
self.embeddings = FlaxAlbertEmbeddings(self.config, dtype=self.dtype)
|
351 |
+
self.encoder = CustomFlaxAlbertEncoder(self.config, dtype=self.dtype)
|
352 |
+
if self.add_pooling_layer:
|
353 |
+
self.pooler = nn.Dense(
|
354 |
+
self.config.hidden_size,
|
355 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
356 |
+
dtype=self.dtype,
|
357 |
+
name="pooler",
|
358 |
)
|
359 |
+
self.pooler_activation = nn.tanh
|
360 |
+
else:
|
361 |
+
self.pooler = None
|
362 |
+
self.pooler_activation = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
def __call__(
|
365 |
self,
|
366 |
+
input_ids,
|
367 |
attention_mask,
|
368 |
+
token_type_ids: Optional[np.ndarray] = None,
|
369 |
+
position_ids: Optional[np.ndarray] = None,
|
370 |
+
deterministic: bool = True,
|
371 |
output_attentions: bool = False,
|
372 |
+
output_hidden_states: bool = False,
|
373 |
+
return_dict: bool = True,
|
374 |
interv_type: str = "swap",
|
375 |
interv_dict: dict = {},
|
376 |
):
|
377 |
+
# make sure `token_type_ids` is correctly initialized when not passed
|
378 |
+
if token_type_ids is None:
|
379 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
380 |
|
381 |
+
# make sure `position_ids` is correctly initialized when not passed
|
382 |
+
if position_ids is None:
|
383 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
384 |
+
|
385 |
+
hidden_states = self.embeddings(input_ids, token_type_ids, position_ids, deterministic=deterministic)
|
386 |
+
|
387 |
+
outputs = self.encoder(
|
388 |
+
hidden_states,
|
389 |
+
attention_mask,
|
390 |
+
deterministic=deterministic,
|
391 |
+
output_attentions=output_attentions,
|
392 |
+
output_hidden_states=output_hidden_states,
|
393 |
+
return_dict=return_dict,
|
394 |
+
interv_type=interv_type,
|
395 |
+
interv_dict=interv_dict,
|
396 |
)
|
397 |
+
hidden_states = outputs[0]
|
398 |
+
if self.add_pooling_layer:
|
399 |
+
pooled = self.pooler(hidden_states[:, 0])
|
400 |
+
pooled = self.pooler_activation(pooled)
|
401 |
+
else:
|
402 |
+
pooled = None
|
403 |
+
|
404 |
+
if not return_dict:
|
405 |
+
# if pooled is None, don't return it
|
406 |
+
if pooled is None:
|
407 |
+
return (hidden_states,) + outputs[1:]
|
408 |
+
return (hidden_states, pooled) + outputs[1:]
|
409 |
+
|
410 |
+
return FlaxBaseModelOutputWithPooling(
|
411 |
+
last_hidden_state=hidden_states,
|
412 |
+
pooler_output=pooled,
|
413 |
+
hidden_states=outputs.hidden_states,
|
414 |
+
attentions=outputs.attentions,
|
415 |
)
|
416 |
|
417 |
+
class CustomFlaxAlbertForMaskedLMModule(nn.Module):
|
418 |
+
config: AlbertConfig
|
419 |
+
dtype: jnp.dtype = jnp.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
+
def setup(self):
|
422 |
+
self.albert = CustomFlaxAlbertModule(config=self.config, add_pooling_layer=False, dtype=self.dtype)
|
423 |
+
self.predictions = FlaxAlbertOnlyMLMHead(config=self.config, dtype=self.dtype)
|
424 |
|
425 |
+
def __call__(
|
426 |
+
self,
|
427 |
+
input_ids,
|
428 |
+
attention_mask,
|
429 |
+
token_type_ids,
|
430 |
+
position_ids,
|
431 |
+
deterministic: bool = True,
|
432 |
+
output_attentions: bool = False,
|
433 |
+
output_hidden_states: bool = False,
|
434 |
+
return_dict: bool = True,
|
435 |
+
interv_type: str = "swap",
|
436 |
+
interv_dict: dict = {},
|
437 |
+
):
|
438 |
+
# Model
|
439 |
+
outputs = self.albert(
|
440 |
+
input_ids,
|
441 |
+
attention_mask,
|
442 |
+
token_type_ids,
|
443 |
+
position_ids,
|
444 |
deterministic=deterministic,
|
445 |
+
output_attentions=output_attentions,
|
446 |
+
output_hidden_states=output_hidden_states,
|
447 |
+
return_dict=return_dict,
|
448 |
+
interv_type=interv_type,
|
449 |
+
interv_dict=interv_dict,
|
450 |
)
|
451 |
|
452 |
+
hidden_states = outputs[0]
|
453 |
+
if self.config.tie_word_embeddings:
|
454 |
+
shared_embedding = self.albert.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
|
455 |
+
else:
|
456 |
+
shared_embedding = None
|
457 |
|
458 |
+
# Compute the prediction scores
|
459 |
+
logits = self.predictions(hidden_states, shared_embedding=shared_embedding)
|
460 |
+
|
461 |
+
if not return_dict:
|
462 |
+
return (logits,) + outputs[1:]
|
463 |
+
|
464 |
+
return FlaxMaskedLMOutput(
|
465 |
+
logits=logits,
|
466 |
+
hidden_states=outputs.hidden_states,
|
467 |
+
attentions=outputs.attentions,
|
468 |
+
)
|
469 |
+
|
470 |
+
class CustomFlaxAlbertForMaskedLM(FlaxAlbertPreTrainedModel):
|
471 |
+
module_class = CustomFlaxAlbertForMaskedLMModule
|