taka-yamakoshi
fix
a440ac3
raw
history blame
2.49 kB
import numpy as np
import pandas as pd
import time
import streamlit as st
import matplotlib.pyplot as plt
import seaborn as sns
import jax
import jax.numpy as jnp
import torch
import torch.nn.functional as F
from transformers import AlbertTokenizer, AlbertForMaskedLM
#from custom_modeling_albert_flax import CustomFlaxAlbertForMaskedLM
from skeleton_modeling_albert import SkeletonAlbertForMaskedLM
@st.cache(show_spinner=True,allow_output_mutation=True)
def load_model():
tokenizer = AlbertTokenizer.from_pretrained('albert-xxlarge-v2')
#model = CustomFlaxAlbertForMaskedLM.from_pretrained('albert-xxlarge-v2',from_pt=True)
model = AlbertForMaskedLM.from_pretrained('albert-xxlarge-v2')
return tokenizer,model
def clear_data():
for key in st.session_state:
del st.session_state[key]
if __name__=='__main__':
# Config
max_width = 1500
padding_top = 0
padding_right = 2
padding_bottom = 0
padding_left = 2
define_margins = f"""
<style>
.appview-container .main .block-container{{
max-width: {max_width}px;
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
</style>
"""
hide_table_row_index = """
<style>
tbody th {display:none}
.blank {display:none}
</style>
"""
st.markdown(define_margins, unsafe_allow_html=True)
st.markdown(hide_table_row_index, unsafe_allow_html=True)
tokenizer,model = load_model()
mask_id = tokenizer('[MASK]').input_ids[1:-1][0]
sent_1 = st.sidebar.text_input('Sentence 1',value='It is better to play a prank on Samuel than Craig because he gets angry less often.',on_change=clear_data)
sent_2 = st.sidebar.text_input('Sentence 2',value='It is better to play a prank on Samuel than Craig because he gets angry more often.',on_change=clear_data)
input_ids_1 = tokenizer(sent_1).input_ids
input_ids_2 = tokenizer(sent_2).input_ids
input_ids = torch.tensor([input_ids_1,input_ids_2])
outputs = SkeletonAlbertForMaskedLM(model,input_ids,interventions = {0:{'lay':[(8,1,[0,1])]}})
logprobs = F.log_softmax(outputs['logits'], dim = -1)
preds = [torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1) for probs in logprobs[0]]
st.write([tokenizer.decode([token]) for token in preds])