山越貴耀
added app
4c1fd66
raw
history blame
11.7 kB
import pandas as pd
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sentence_transformers import SentenceTransformer
from transformers import BertTokenizer,BertForMaskedLM
import cv2
def load_sentence_model():
sentence_model = SentenceTransformer('paraphrase-distilroberta-base-v1')
return sentence_model
@st.cache(show_spinner=False)
def load_model(model_name):
if model_name.startswith('bert'):
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForMaskedLM.from_pretrained(model_name)
model.eval()
return tokenizer,model
@st.cache
def load_data(sentence_num):
df = pd.read_csv('tsne_out.csv')
df = df.loc[lambda d: (d['sentence_num']==sentence_num)&(d['iter_num']<1000)]
return df
@st.cache
def mask_prob(model,mask_id,sentences,position,temp=1):
masked_sentences = sentences.clone()
masked_sentences[:, position] = mask_id
with torch.no_grad():
logits = model(masked_sentences)[0]
return F.log_softmax(logits[:, position] / temp, dim = -1)
@st.cache
def sample_words(probs,pos,sentences):
candidates = [[tokenizer.decode([candidate]),torch.exp(probs)[0,candidate].item()]
for candidate in torch.argsort(probs[0],descending=True)[:10]]
df = pd.DataFrame(data=candidates,columns=['word','prob'])
chosen_words = torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1)
new_sentences = sentences.clone()
new_sentences[:, pos] = chosen_words
return new_sentences, df
def run_chains(tokenizer,model,mask_id,input_text,num_steps):
init_sent = tokenizer(input_text,return_tensors='pt')['input_ids']
seq_len = init_sent.shape[1]
sentence = init_sent.clone()
data_list = []
st.sidebar.write('Generating samples...')
st.sidebar.write('This takes ~30 seconds for 1000 steps with ~10 token sentences')
chain_progress = st.sidebar.progress(0)
for step_id in range(num_steps):
chain_progress.progress((step_id+1)/num_steps)
pos = torch.randint(seq_len-2,size=(1,)).item()+1
data_list.append([step_id,' '.join([tokenizer.decode([token]) for token in sentence[0]]),pos])
probs = mask_prob(model,mask_id,sentence,pos)
sentence,_ = sample_words(probs,pos,sentence)
return pd.DataFrame(data=data_list,columns=['step','sentence','next_sample_loc'])
@st.cache(suppress_st_warning=True,show_spinner=False)
def run_tsne(chain):
st.sidebar.write('Running t-SNE...')
chain = chain.assign(cleaned_sentence=chain.sentence.str.replace(r'\[CLS\] ', '',regex=True).str.replace(r' \[SEP\]', '',regex=True))
sentence_model = load_sentence_model()
sentence_embeddings = sentence_model.encode(chain.cleaned_sentence.to_list(), show_progress_bar=False)
tsne = TSNE(n_components = 2, n_iter=2000)
big_pca = PCA(n_components = 50)
tsne_vals = tsne.fit_transform(big_pca.fit_transform(sentence_embeddings))
tsne = pd.concat([chain, pd.DataFrame(tsne_vals, columns = ['x_tsne', 'y_tsne'],index=chain.index)], axis = 1)
return tsne
def clear_df():
del st.session_state['df']
@st.cache(show_spinner=False)
def plot_fig(df,sent_id,xlims,ylims,color_list):
x_tsne, y_tsne = df.x_tsne, df.y_tsne
fig = plt.figure(figsize=(5,5),dpi=200)
ax = fig.add_subplot(1,1,1)
ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
ax.set_xlim(*xlims)
ax.set_ylim(*ylims)
ax.axis('off')
ax.set_title(df.cleaned_sentence.to_list()[sent_id])
fig.savefig(f'figures/{sent_id}.png')
plt.clf()
plt.close()
def pre_render_images(df,input_sent_id):
sent_id_options = [min(len(df)-1,max(0,input_sent_id+increment)) for increment in [-500,-100,-10,-1,0,1,10,100,500]]
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xmax,xmin = (max(x_tsne)//30+1)*30,(min(x_tsne)//30-1)*30
ymax,ymin = (max(y_tsne)//30+1)*30,(min(y_tsne)//30-1)*30
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
sent_list = []
fig_production = st.progress(0)
for fig_id,sent_id in enumerate(sent_id_options):
fig_production.progress(fig_id+1)
plot_fig(fig_id,x_tsne,y_tsne,sent_id,[xmin,xmax],[ymin,ymax],color_list)
sent_list.append(df.cleaned_sentence.to_list()[sent_id])
return sent_list
if __name__=='__main__':
# Config
max_width = 1500
padding_top = 2
padding_right = 5
padding_bottom = 0
padding_left = 5
define_margins = f"""
<style>
.appview-container .main .block-container{{
max-width: {max_width}px;
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
</style>
"""
hide_table_row_index = """
<style>
tbody th {display:none}
.blank {display:none}
</style>
"""
st.markdown(define_margins, unsafe_allow_html=True)
st.markdown(hide_table_row_index, unsafe_allow_html=True)
# Title
st.header("Demo: Probing BERT's priors with serial reproduction chains")
# Load BERT
tokenizer,model = load_model('bert-base-uncased')
mask_id = tokenizer.encode("[MASK]")[1:-1][0]
# First step: load the dataframe containing sentences
input_type = st.sidebar.radio(label='1. Choose the input type',options=('Use one of our example sentences','Use your own initial sentence'))
if input_type=='Use one of our example sentences':
sentence = st.sidebar.selectbox("Select the inital sentence",
('About 170 campers attend the camps each week.',
'She grew up with three brothers and ten sisters.'))
if sentence=='About 170 campers attend the camps each week.':
sentence_num = 6
else:
sentence_num = 8
st.session_state.df = load_data(sentence_num)
else:
sentence = st.sidebar.text_input('Type down your own sentence here',on_change=clear_df)
num_steps = st.sidebar.number_input(label='How many steps do you want to run?',value=1000)
if st.sidebar.button('Run chains'):
chain = run_chains(tokenizer,model,mask_id,sentence,num_steps=num_steps)
st.session_state.df = run_tsne(chain)
st.session_state.finished_sampling = True
if 'df' in st.session_state:
df = st.session_state.df
sent_id = st.sidebar.slider(label='2. Select the position in a chain to start exploring',
min_value=0,max_value=len(df)-1,value=0)
explore_type = st.sidebar.radio('3. Choose the way to explore',options=['In fixed increments','Click through each step','Autoplay'])
if explore_type=='Autoplay':
if st.button('Create the video (this may take a few minutes)'):
st.write('Creating the video...')
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xmax,xmin = (max(x_tsne)//30+1)*30,(min(x_tsne)//30-1)*30
ymax,ymin = (max(y_tsne)//30+1)*30,(min(y_tsne)//30-1)*30
color_list = sns.color_palette('flare',n_colors=1200)
fig_production = st.progress(0)
plot_fig(df,0,[xmin,xmax],[ymin,ymax],color_list)
img = cv2.imread('figures/0.png')
height, width, layers = img.shape
size = (width,height)
out = cv2.VideoWriter('sampling_video.mp4',cv2.VideoWriter_fourcc(*'H264'), 3, size)
for sent_id in range(1000):
fig_production.progress((sent_id+1)/1000)
plot_fig(df,sent_id,[xmin,xmax],[ymin,ymax],color_list)
img = cv2.imread(f'figures/{sent_id}.png')
out.write(img)
out.release()
cols = st.columns([1,2,1])
with cols[1]:
with open('sampling_video.mp4', 'rb') as f:
st.video(f)
else:
if explore_type=='In fixed increments':
button_labels = ['-500','-100','-10','-1','0','+1','+10','+100','+500']
increment = st.sidebar.radio(label='select increment',options=button_labels,index=4)
sent_id += int(increment.replace('+',''))
sent_id = min(len(df)-1,max(0,sent_id))
elif explore_type=='Click through each step':
sent_id = st.sidebar.number_input(label='step number',value=sent_id)
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xlims = [(min(x_tsne)//30-1)*30,(max(x_tsne)//30+1)*30]
ylims = [(min(y_tsne)//30-1)*30,(max(y_tsne)//30+1)*30]
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
fig = plt.figure(figsize=(5,5),dpi=200)
ax = fig.add_subplot(1,1,1)
ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
ax.set_xlim(*xlims)
ax.set_ylim(*ylims)
ax.axis('off')
sentence = df.cleaned_sentence.to_list()[sent_id]
input_sent = tokenizer(sentence,return_tensors='pt')['input_ids']
decoded_sent = [tokenizer.decode([token]) for token in input_sent[0]]
show_candidates = st.checkbox('Show candidates')
if show_candidates:
st.write('Click any word to see each candidate with its probability')
cols = st.columns(len(decoded_sent))
with cols[0]:
st.write(decoded_sent[0])
with cols[-1]:
st.write(decoded_sent[-1])
for word_id,(col,word) in enumerate(zip(cols[1:-1],decoded_sent[1:-1])):
with col:
if st.button(word):
probs = mask_prob(model,mask_id,input_sent,word_id+1)
_,candidates_df = sample_words(probs, word_id+1, input_sent)
st.table(candidates_df)
else:
disp_style = '"font-family:san serif; color:Black; font-size: 25px; font-weight:bold"'
if explore_type=='Click through each step' and input_type=='Use your own initial sentence' and sent_id>0 and 'finished_sampling' in st.session_state:
sampled_loc = df.next_sample_loc.to_list()[sent_id-1]
disp_sent_before = f'<p style={disp_style}>'+' '.join(decoded_sent[1:sampled_loc])
new_word = f'<span style="color:Red">{decoded_sent[sampled_loc]}</span>'
disp_sent_after = ' '.join(decoded_sent[sampled_loc+1:-1])+'</p>'
st.markdown(disp_sent_before+' '+new_word+' '+disp_sent_after,unsafe_allow_html=True)
else:
st.markdown(f'<p style={disp_style}>{sentence}</p>',unsafe_allow_html=True)
cols = st.columns([1,2,1])
with cols[1]:
st.pyplot(fig)