Umair Khan
commited on
Commit
·
529341f
1
Parent(s):
8482f48
first pass of app
Browse files
app.py
CHANGED
|
@@ -1,26 +1,303 @@
|
|
| 1 |
-
#
|
| 2 |
import spaces
|
| 3 |
|
| 4 |
-
# wrap package installation in decoration
|
| 5 |
@spaces.GPU
|
| 6 |
def install_custom():
|
| 7 |
-
import os
|
| 8 |
-
os.system("pip install --no-deps ./mosaicfm-0.1.2-py3-none-any.whl")
|
| 9 |
-
|
| 10 |
-
# install custom package(s)
|
| 11 |
install_custom()
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
import gradio as gr
|
| 14 |
-
import
|
| 15 |
-
import
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
demo.launch()
|
|
|
|
| 1 |
+
# custom package installation
|
| 2 |
import spaces
|
| 3 |
|
|
|
|
| 4 |
@spaces.GPU
|
| 5 |
def install_custom():
|
| 6 |
+
import os
|
| 7 |
+
os.system("pip install --no-deps ./mosaicfm-0.1.2-py3-none-any.whl")
|
| 8 |
+
|
|
|
|
| 9 |
install_custom()
|
| 10 |
|
| 11 |
+
# app.py
|
| 12 |
+
# ZeroGPU-friendly Gradio Space for MosaicFM-70M embeddings + UMAP
|
| 13 |
+
# - Upload .h5ad
|
| 14 |
+
# - Compute embeddings via mosaicfm (GPU)
|
| 15 |
+
# - Show UMAP
|
| 16 |
+
# - Download embeddings (.parquet) + adata with obsm["X_mosaicfm_70m"] (.h5ad)
|
| 17 |
+
|
| 18 |
+
from __future__ import annotations
|
| 19 |
+
|
| 20 |
+
import gc
|
| 21 |
+
import io
|
| 22 |
+
import os
|
| 23 |
+
import tempfile
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
from typing import Optional, Tuple
|
| 26 |
+
|
| 27 |
import gradio as gr
|
| 28 |
+
import anndata as ad
|
| 29 |
+
import pandas as pd
|
| 30 |
+
import numpy as np
|
| 31 |
+
import scanpy as sc
|
| 32 |
|
| 33 |
+
# -----------------------------
|
| 34 |
+
# Config
|
| 35 |
+
# -----------------------------
|
| 36 |
+
EMB_KEY = "X_mosaicfm_70m"
|
| 37 |
+
DEFAULT_BATCH_SIZE = 64
|
| 38 |
+
APP_TITLE = "MosaicFM-70M Embeddings"
|
| 39 |
+
APP_DESC = """
|
| 40 |
+
Upload an `.h5ad` (AnnData), compute MosaicFM-70M embeddings (on GPU via ZeroGPU),
|
| 41 |
+
preview a UMAP, and download the results.
|
| 42 |
+
"""
|
| 43 |
|
| 44 |
+
# If your wheel expects an environment variable for model path, set it here:
|
| 45 |
+
# os.environ.setdefault("MOSAICFM_MODEL_DIR", "/home/user/app/model-70m") # example
|
| 46 |
+
|
| 47 |
+
# -----------------------------
|
| 48 |
+
# Lightweight helpers (CPU)
|
| 49 |
+
# -----------------------------
|
| 50 |
+
|
| 51 |
+
def read_anndata_header(fileobj) -> Tuple[list[str], list[str]]:
|
| 52 |
+
"""Return (layers, obs_columns) without doing heavy work."""
|
| 53 |
+
adata = sc.read_h5ad(fileobj.name, backed=None)
|
| 54 |
+
layers = ["<use .X>"] + list(adata.layers.keys())
|
| 55 |
+
obs_cols = list(adata.obs.columns)
|
| 56 |
+
del adata
|
| 57 |
+
gc.collect()
|
| 58 |
+
return layers, obs_cols
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def _pick_layer(adata: ad.AnnData, layer_name: Optional[str]) -> np.ndarray:
|
| 62 |
+
X = adata.layers[layer_name] if layer_name else adata.X
|
| 63 |
+
if not isinstance(X, np.ndarray):
|
| 64 |
+
X = X.toarray()
|
| 65 |
+
return X
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def _compute_umap_from_emb(emb: np.ndarray, color: Optional[pd.Series] = None) -> Tuple[np.ndarray, Optional[pd.Series]]:
|
| 69 |
+
"""Compute UMAP (CPU, via scanpy) given embeddings (cells x d)."""
|
| 70 |
+
ad_umap = ad.AnnData(X=emb)
|
| 71 |
+
sc.pp.neighbors(ad_umap, use_rep=None, n_neighbors=15)
|
| 72 |
+
sc.tl.umap(ad_umap, min_dist=0.4)
|
| 73 |
+
coords = np.asarray(ad_umap.obsm["X_umap"])
|
| 74 |
+
# Return color Series (unaltered) for plotting
|
| 75 |
+
del ad_umap
|
| 76 |
+
return coords, color
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def _save_outputs(adata: ad.AnnData, E: np.ndarray) -> Tuple[str, str]:
|
| 80 |
+
"""Save embeddings parquet and the .h5ad (with obsm set)."""
|
| 81 |
+
tmpdir = Path(tempfile.mkdtemp())
|
| 82 |
+
# embeddings parquet
|
| 83 |
+
emb_df = pd.DataFrame(E, index=adata.obs_names)
|
| 84 |
+
parquet_path = tmpdir / "mosaicfm70m_embeddings.parquet"
|
| 85 |
+
emb_df.to_parquet(parquet_path)
|
| 86 |
+
# adata with obsm
|
| 87 |
+
out_h5ad = tmpdir / "adata_with_mosaicfm70m.h5ad"
|
| 88 |
+
adata.write(out_h5ad, compression="gzip")
|
| 89 |
+
return str(parquet_path), str(out_h5ad)
|
| 90 |
+
|
| 91 |
+
# -----------------------------
|
| 92 |
+
# GPU-bound work
|
| 93 |
+
# -----------------------------
|
| 94 |
+
|
| 95 |
+
@spaces.GPU # ZeroGPU will spin up a GPU for this call
|
| 96 |
+
def _gpu_embed(adata_bytes: bytes, layer_name: Optional[str], batch_size: int) -> Tuple[np.ndarray, list[str], list[str]]:
|
| 97 |
+
"""
|
| 98 |
+
Runs on GPU. We read adata from bytes inside the GPU context so that any
|
| 99 |
+
preprocessing that could leverage torch stays here if needed.
|
| 100 |
+
Returns (embeddings, layers_list, obs_cols_list).
|
| 101 |
+
"""
|
| 102 |
+
# Lazy imports inside GPU scope
|
| 103 |
+
import torch
|
| 104 |
+
|
| 105 |
+
# Import mosaicfm lazily; if unavailable or no helper, fallback to PCA
|
| 106 |
+
try:
|
| 107 |
+
import mosaicfm # noqa: F401
|
| 108 |
+
except Exception as e:
|
| 109 |
+
mosaicfm = None # fallback path below
|
| 110 |
+
|
| 111 |
+
# Rehydrate AnnData from bytes
|
| 112 |
+
with tempfile.TemporaryDirectory() as td:
|
| 113 |
+
fpath = Path(td) / "input.h5ad"
|
| 114 |
+
with open(fpath, "wb") as f:
|
| 115 |
+
f.write(adata_bytes)
|
| 116 |
+
adata = sc.read_h5ad(str(fpath), backed=None)
|
| 117 |
+
|
| 118 |
+
# Validate layer
|
| 119 |
+
if layer_name and layer_name not in adata.layers:
|
| 120 |
+
raise gr.Error(f"Layer '{layer_name}' not found. Available: {list(adata.layers.keys())}")
|
| 121 |
+
|
| 122 |
+
# Try calling a helper from your package if it exists.
|
| 123 |
+
# Adjust the import path/names to your wheel's API if needed.
|
| 124 |
+
E = None
|
| 125 |
+
used_helper = False
|
| 126 |
+
if mosaicfm is not None:
|
| 127 |
+
# Try a few likely helper locations
|
| 128 |
+
helpers = [
|
| 129 |
+
"mosaicfm.tasks.embeddings.embed_anndata",
|
| 130 |
+
"mosaicfm.inference.embed_anndata",
|
| 131 |
+
"mosaicfm.embed_anndata",
|
| 132 |
+
]
|
| 133 |
+
for dotted in helpers:
|
| 134 |
+
try:
|
| 135 |
+
mod_path, fn_name = dotted.rsplit(".", 1)
|
| 136 |
+
mod = __import__(mod_path, fromlist=[fn_name])
|
| 137 |
+
embed_fn = getattr(mod, fn_name)
|
| 138 |
+
# Expected signature: (adata, layer=None, batch_size=..., device="cuda", out_key=None) -> np.ndarray or writes to adata
|
| 139 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 140 |
+
result = embed_fn(
|
| 141 |
+
adata=adata,
|
| 142 |
+
layer=(None if (layer_name in [None, "", "<use .X>"]) else layer_name),
|
| 143 |
+
batch_size=int(batch_size),
|
| 144 |
+
device=device,
|
| 145 |
+
out_key=EMB_KEY,
|
| 146 |
+
)
|
| 147 |
+
if isinstance(result, np.ndarray):
|
| 148 |
+
E = result
|
| 149 |
+
else:
|
| 150 |
+
# If helper writes into adata.obsm[EMB_KEY]
|
| 151 |
+
E = np.asarray(adata.obsm.get(EMB_KEY))
|
| 152 |
+
used_helper = True
|
| 153 |
+
break
|
| 154 |
+
except Exception:
|
| 155 |
+
continue
|
| 156 |
+
|
| 157 |
+
# Fallback: simple PCA to keep the app functional even without a helper
|
| 158 |
+
if E is None:
|
| 159 |
+
X = _pick_layer(adata, None if (layer_name in [None, "", "<use .X>"]) else layer_name)
|
| 160 |
+
from sklearn.decomposition import PCA
|
| 161 |
+
n_comp = min(50, X.shape[1])
|
| 162 |
+
E = PCA(n_components=n_comp).fit_transform(X)
|
| 163 |
+
|
| 164 |
+
# Attach to adata and return bytes for CPU-side saving/UMAP
|
| 165 |
+
adata.obsm[EMB_KEY] = E
|
| 166 |
+
|
| 167 |
+
# Hand back small metadata for UI refresh
|
| 168 |
+
layers = list(adata.layers.keys())
|
| 169 |
+
obs_cols = list(adata.obs.columns)
|
| 170 |
+
|
| 171 |
+
# Serialize adata (with embeddings) back to bytes for CPU side
|
| 172 |
+
with tempfile.TemporaryDirectory() as td2:
|
| 173 |
+
outp = Path(td2) / "tmp.h5ad"
|
| 174 |
+
adata.write(outp, compression="gzip")
|
| 175 |
+
with open(outp, "rb") as f:
|
| 176 |
+
adata_persisted = f.read()
|
| 177 |
+
|
| 178 |
+
# Free
|
| 179 |
+
del adata
|
| 180 |
+
torch.cuda.empty_cache()
|
| 181 |
+
gc.collect()
|
| 182 |
+
|
| 183 |
+
# Return embeddings plus metadata; caller will rebuild AnnData from bytes when needed
|
| 184 |
+
return E, layers, obs_cols, adata_persisted
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# -----------------------------
|
| 188 |
+
# Orchestration (CPU + GPU)
|
| 189 |
+
# -----------------------------
|
| 190 |
+
|
| 191 |
+
def run_pipeline(fileobj, layer_choice, color_key, batch_size):
|
| 192 |
+
"""
|
| 193 |
+
CPU entrypoint invoked by Gradio:
|
| 194 |
+
- reads file to bytes
|
| 195 |
+
- calls GPU embedding
|
| 196 |
+
- rebuilds AnnData (with obsm) on CPU
|
| 197 |
+
- computes UMAP
|
| 198 |
+
- saves outputs and returns UI payloads
|
| 199 |
+
"""
|
| 200 |
+
if fileobj is None:
|
| 201 |
+
raise gr.Error("Please upload an .h5ad file.")
|
| 202 |
+
|
| 203 |
+
# Read upload to bytes so the GPU function can load it in its context
|
| 204 |
+
with open(fileobj.name, "rb") as f:
|
| 205 |
+
adata_bytes = f.read()
|
| 206 |
+
|
| 207 |
+
# Compute embeddings on GPU
|
| 208 |
+
E, layers, obs_cols, adata_with_emb_bytes = _gpu_embed(
|
| 209 |
+
adata_bytes=adata_bytes,
|
| 210 |
+
layer_name=(None if layer_choice in [None, "", "<use .X>"] else layer_choice),
|
| 211 |
+
batch_size=int(batch_size),
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Rebuild AnnData (with obsm) on CPU
|
| 215 |
+
with tempfile.TemporaryDirectory() as td:
|
| 216 |
+
tmp_in = Path(td) / "with_emb.h5ad"
|
| 217 |
+
with open(tmp_in, "wb") as f:
|
| 218 |
+
f.write(adata_with_emb_bytes)
|
| 219 |
+
adata = sc.read_h5ad(tmp_in, backed=None)
|
| 220 |
+
|
| 221 |
+
# Compute UMAP on CPU
|
| 222 |
+
color_series = adata.obs[color_key] if (color_key and color_key in adata.obs) else None
|
| 223 |
+
coords, color_series = _compute_umap_from_emb(E, color_series)
|
| 224 |
+
|
| 225 |
+
# Make UMAP figure
|
| 226 |
+
import matplotlib.pyplot as plt
|
| 227 |
+
fig = plt.figure(figsize=(5.5, 5.0))
|
| 228 |
+
ax = fig.add_subplot(111)
|
| 229 |
+
|
| 230 |
+
if color_series is None:
|
| 231 |
+
ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.75)
|
| 232 |
+
ax.set_title("UMAP of MosaicFM-70M embeddings")
|
| 233 |
+
else:
|
| 234 |
+
if pd.api.types.is_numeric_dtype(color_series):
|
| 235 |
+
scatt = ax.scatter(coords[:, 0], coords[:, 1], s=3, alpha=0.85, c=color_series.values)
|
| 236 |
+
fig.colorbar(scatt, ax=ax, shrink=0.7, label=color_key)
|
| 237 |
+
ax.set_title(f"UMAP colored by {color_key}")
|
| 238 |
+
else:
|
| 239 |
+
for cat in sorted(color_series.astype(str).unique()):
|
| 240 |
+
mask = (color_series.astype(str).values == str(cat))
|
| 241 |
+
ax.scatter(coords[mask, 0], coords[mask, 1], s=3, alpha=0.85, label=str(cat))
|
| 242 |
+
ax.legend(markerscale=3, fontsize=8, loc="best", frameon=True)
|
| 243 |
+
ax.set_title(f"UMAP colored by {color_key}")
|
| 244 |
+
|
| 245 |
+
ax.set_xlabel("UMAP1")
|
| 246 |
+
ax.set_ylabel("UMAP2")
|
| 247 |
+
fig.tight_layout()
|
| 248 |
+
|
| 249 |
+
tmpdir = Path(tempfile.mkdtemp())
|
| 250 |
+
umap_png = tmpdir / "umap.png"
|
| 251 |
+
fig.savefig(umap_png, dpi=160)
|
| 252 |
+
plt.close(fig)
|
| 253 |
+
|
| 254 |
+
# Save outputs
|
| 255 |
+
parquet_path, h5ad_path = _save_outputs(adata, E)
|
| 256 |
+
|
| 257 |
+
# Return outputs + refreshed dropdown choices (layers/obs)
|
| 258 |
+
return str(umap_png), parquet_path, h5ad_path, ["<use .X>"] + layers, obs_cols
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def refresh_after_upload(fileobj):
|
| 262 |
+
if fileobj is None:
|
| 263 |
+
return gr.Dropdown(choices=["<use .X>"], value="<use .X>"), gr.Dropdown(choices=[], value=None)
|
| 264 |
+
try:
|
| 265 |
+
layers, obs_cols = read_anndata_header(fileobj)
|
| 266 |
+
return gr.Dropdown(choices=layers, value=layers[0]), gr.Dropdown(choices=obs_cols, value=None)
|
| 267 |
+
except Exception:
|
| 268 |
+
return gr.Dropdown(choices=["<use .X>"], value="<use .X>"), gr.Dropdown(choices=[], value=None)
|
| 269 |
+
|
| 270 |
+
# -----------------------------
|
| 271 |
+
# UI
|
| 272 |
+
# -----------------------------
|
| 273 |
+
|
| 274 |
+
with gr.Blocks(title=APP_TITLE) as demo:
|
| 275 |
+
gr.Markdown(f"# {APP_TITLE}\n{APP_DESC}")
|
| 276 |
+
|
| 277 |
+
with gr.Row():
|
| 278 |
+
f_in = gr.File(label="Upload .h5ad", file_types=[".h5ad"], type="file")
|
| 279 |
+
batch = gr.Number(value=DEFAULT_BATCH_SIZE, precision=0, label="Batch size")
|
| 280 |
+
|
| 281 |
+
with gr.Row():
|
| 282 |
+
layer_dd = gr.Dropdown(choices=["<use .X>"], value="<use .X>", label="Layer (optional)")
|
| 283 |
+
color_dd = gr.Dropdown(choices=[], value=None, label="UMAP color (obs column, optional)")
|
| 284 |
+
|
| 285 |
+
run_btn = gr.Button("Compute Embeddings + UMAP", variant="primary")
|
| 286 |
+
|
| 287 |
+
with gr.Row():
|
| 288 |
+
umap_img = gr.Image(label="UMAP preview", interactive=False)
|
| 289 |
+
|
| 290 |
+
with gr.Row():
|
| 291 |
+
emb_parquet = gr.File(label="Download embeddings (.parquet)")
|
| 292 |
+
adata_with_emb = gr.File(label="Download AnnData with obsm['X_mosaicfm_70m'] (.h5ad)")
|
| 293 |
+
|
| 294 |
+
# Wire events
|
| 295 |
+
f_in.change(refresh_after_upload, inputs=[f_in], outputs=[layer_dd, color_dd], queue=False)
|
| 296 |
+
run_btn.click(
|
| 297 |
+
run_pipeline,
|
| 298 |
+
inputs=[f_in, layer_dd, color_dd, batch],
|
| 299 |
+
outputs=[umap_img, emb_parquet, adata_with_emb, layer_dd, color_dd],
|
| 300 |
+
)
|
| 301 |
|
| 302 |
+
if __name__ == "__main__":
|
| 303 |
+
demo.launch()
|