Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
#from transformers import AutoTokenizer
|
3 |
from llama_cpp import Llama
|
4 |
-
|
5 |
#from peft import PeftModel, PeftConfig
|
6 |
#from transformers import AutoModelForCausalLM
|
7 |
from datasets import load_dataset
|
@@ -45,24 +45,20 @@ st.markdown(
|
|
45 |
# Add the blurred background div
|
46 |
st.markdown('<div class="blurred-background"></div>', unsafe_allow_html=True)
|
47 |
|
48 |
-
""""""""""""""""""""""""" Application Code Starts here """""""""""""""""""""""""""""""""""""""""""""
|
49 |
|
50 |
-
#
|
51 |
-
MODEL_PATH = "/root/.cache/huggingface/hub/models--QuantFactory--Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2-GGUF/blobs/"
|
52 |
-
|
53 |
-
# Load Llama model
|
54 |
@st.cache_resource
|
55 |
-
def
|
56 |
try:
|
57 |
-
|
58 |
-
return Llama(model_path=f"{MODEL_PATH}/model.gguf", n_threads=8) # Adjust n_threads based on your environment
|
59 |
except Exception as e:
|
60 |
st.error(f"Error loading model: {e}")
|
61 |
return None
|
62 |
|
63 |
-
|
64 |
|
65 |
-
# Load
|
66 |
@st.cache_resource
|
67 |
def load_counseling_dataset():
|
68 |
return load_dataset("Amod/mental_health_counseling_conversations")
|
@@ -77,8 +73,8 @@ This platform is designed to provide **supportive, positive, and encouraging res
|
|
77 |
""")
|
78 |
|
79 |
# Check if the model loaded correctly
|
80 |
-
if
|
81 |
-
st.error("The text generation model could not be loaded. Please check your configuration.")
|
82 |
else:
|
83 |
# Explore dataset for additional context or resources (optional)
|
84 |
if st.checkbox("Show Example Questions and Answers from Dataset"):
|
@@ -94,12 +90,14 @@ else:
|
|
94 |
if st.button("Get Supportive Response"):
|
95 |
if user_input.strip():
|
96 |
try:
|
97 |
-
# Generate response using
|
98 |
prompt = f"User: {user_input}\nCounselor:"
|
99 |
-
response =
|
100 |
|
|
|
|
|
101 |
st.subheader("Counselor's Response:")
|
102 |
-
st.write(
|
103 |
except Exception as e:
|
104 |
st.error(f"An error occurred while generating the response: {e}")
|
105 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
#from transformers import AutoTokenizer
|
3 |
from llama_cpp import Llama
|
4 |
+
from transformers import pipeline
|
5 |
#from peft import PeftModel, PeftConfig
|
6 |
#from transformers import AutoModelForCausalLM
|
7 |
from datasets import load_dataset
|
|
|
45 |
# Add the blurred background div
|
46 |
st.markdown('<div class="blurred-background"></div>', unsafe_allow_html=True)
|
47 |
|
48 |
+
#""""""""""""""""""""""""" Application Code Starts here """""""""""""""""""""""""""""""""""""""""""""
|
49 |
|
50 |
+
# Load the text generation model pipeline
|
|
|
|
|
|
|
51 |
@st.cache_resource
|
52 |
+
def load_text_generation_model():
|
53 |
try:
|
54 |
+
return pipeline("text-generation", model="QuantFactory/Mental-Health-FineTuned-Mistral-7B-Instruct-v0.2-GGUF")
|
|
|
55 |
except Exception as e:
|
56 |
st.error(f"Error loading model: {e}")
|
57 |
return None
|
58 |
|
59 |
+
text_generator = load_text_generation_model()
|
60 |
|
61 |
+
# Load the counseling dataset
|
62 |
@st.cache_resource
|
63 |
def load_counseling_dataset():
|
64 |
return load_dataset("Amod/mental_health_counseling_conversations")
|
|
|
73 |
""")
|
74 |
|
75 |
# Check if the model loaded correctly
|
76 |
+
if text_generator is None:
|
77 |
+
st.error("The text generation model could not be loaded. Please check your Hugging Face configuration.")
|
78 |
else:
|
79 |
# Explore dataset for additional context or resources (optional)
|
80 |
if st.checkbox("Show Example Questions and Answers from Dataset"):
|
|
|
90 |
if st.button("Get Supportive Response"):
|
91 |
if user_input.strip():
|
92 |
try:
|
93 |
+
# Generate response using the text generation pipeline
|
94 |
prompt = f"User: {user_input}\nCounselor:"
|
95 |
+
response = text_generator(prompt, max_length=200, num_return_sequences=1)
|
96 |
|
97 |
+
# Extract and display the response
|
98 |
+
counselor_reply = response[0]["generated_text"].split("Counselor:")[-1].strip()
|
99 |
st.subheader("Counselor's Response:")
|
100 |
+
st.write(counselor_reply)
|
101 |
except Exception as e:
|
102 |
st.error(f"An error occurred while generating the response: {e}")
|
103 |
else:
|