Spaces:
Runtime error
Runtime error
import gradio as gr | |
import soundfile as sf | |
import numpy as np | |
import tempfile | |
import torchaudio | |
from transformers import AutoModel | |
# Load ASR Model | |
def load_model(): | |
return AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True) | |
model = load_model() | |
def process_audio(audio, language, decoding_method): | |
if isinstance(audio, tuple): # Recorded audio | |
sample_rate, data = audio | |
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") | |
sf.write(temp_wav.name, data, sample_rate) | |
audio_path = temp_wav.name | |
else: # Uploaded file | |
audio_path = audio | |
# Load and resample audio | |
wav, sr = torchaudio.load(audio_path) | |
target_sample_rate = 16000 | |
if sr != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate) | |
wav = resampler(wav) | |
# Perform ASR with selected decoding method | |
transcription = model(wav, language, decoding_method) | |
return transcription | |
iface = gr.Interface( | |
fn=process_audio, | |
inputs=[ | |
gr.Audio(source="microphone", type="numpy"), | |
gr.Audio(source="upload"), | |
gr.Dropdown(["hi", "ta", "bn", "mr", "te", "gu", "kn", "ml", "pa", "ur"], label="Select Language"), | |
gr.Radio(["ctc", "rnnt"], label="Decoding Method") | |
], | |
outputs="text", | |
title="Multilingual ASR with Indic-Conformer", | |
description="Record or upload an audio file, select a language and decoding method, and transcribe it using the AI4Bharat Indic-Conformer model." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |