AutoSeg / app.py
taher30's picture
Update app.py
e91585d verified
raw
history blame
1.61 kB
import cv2
import torch
import numpy as np
from PIL import Image
from torchvision import transforms
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import matplotlib.pyplot as plt
# import segmentation_models_pytorch as smp
# image= cv2.imread('image_4.png', cv2.IMREAD_COLOR)
def get_masks(model_type, image):
if model_type == 'vit_h':
sam = sam_model_registry["vit_h"](checkpoint="sam_vit_h_4b8939.pth")
masks_h = mask_generator_h.generate(image)
if model_type == 'vit_b':
sam = sam_model_registry["vit_b"](checkpoint="sam_vit_b_01ec64.pth")
if model_type == 'vit_l':
sam = sam_model_registry["vit_l"](checkpoint="sam_vit_l_0b3195.pth")
mask_generator = SamAutomaticMaskGenerator(sam)
masks = mask_generator.generate(image)
for i, mask_data in enumerate(masks):
mask = mask_data['segmentation']
color = colors[i]
composite_image[mask] = (color[:3] * 255).astype(np.uint8) # Apply color to mask
# Combine original image with the composite mask image
overlayed_image = (composite_image * 0.5 + image_cv.squeeze().permute(1, 2, 0).cpu().numpy() * 0.5).astype(np.uint8)
return overlayed_image
iface = gr.Interface(
fn=get_masks,
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Dropdown(['vit_h', 'vit_b', 'vit_l'], label="Model Type")],
outputs=gr.outputs.Image(type="pil"),
title="SAM Model Segmentation and Classification",
description="Upload an image, select a model type, and receive the segmented and classified parts."
)
iface.launch()