Spaces:
Sleeping
Sleeping
from data.schemaClass import State | |
from langchain.prompts import PromptTemplate | |
from langchain.schema import HumanMessage | |
from api_client.api import llm | |
def entity_extraction_node_usecase(state: State): | |
""" | |
Extract all the entities (Person, Organization, Location) from the text | |
""" | |
prompt = PromptTemplate( | |
input_variables=["text"], | |
template="Extract all the entities (Person, Organization, Location) from the following text. Provide the result as a comma-separated list.\n\nText:{text}\n\nEntities:" | |
) | |
message = HumanMessage(content=prompt.format(text=state.text)) # Access state.text instead of state["text"] | |
entities = llm.invoke([message]).content.strip().split(", ") # Get a list of entities | |
# Update the state with the extracted entities | |
state.entities = entities | |
return state # Return the updated state with the entities | |