LapStore
commited on
Commit
·
ceb119d
1
Parent(s):
b1f46e5
try space
Browse files- app.py +3 -10
- index.html +14 -0
- requirements.txt +4 -0
- server.py +224 -0
app.py
CHANGED
@@ -8,23 +8,16 @@ from PIL import ImageOps,Image ,ImageFilter
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
import numpy as np
|
10 |
import ast
|
|
|
|
|
11 |
#http://localhost:8000
|
12 |
app = FastAPI()
|
13 |
|
14 |
# Root route
|
15 |
@app.get('/')
|
16 |
-
def
|
17 |
return "Hello World taha"
|
18 |
|
19 |
-
def get_segment_image(raw_image):
|
20 |
-
#pipe = pipeline("image-segmentation", model="Intel/dpt-large-ade")
|
21 |
-
#output = pipe(raw_image, points_per_batch=32)
|
22 |
-
#return output
|
23 |
-
pass
|
24 |
-
|
25 |
-
def get_supported_segmentation(output,supported_types):
|
26 |
-
return [obj for obj in output if (obj['label'] in supported_types)]
|
27 |
-
|
28 |
|
29 |
@app.post('/predict')
|
30 |
async def predict(supported_types_str: str = Form(),age: str = Form() , file: UploadFile = File(...)):
|
|
|
8 |
import matplotlib.pyplot as plt
|
9 |
import numpy as np
|
10 |
import ast
|
11 |
+
import server
|
12 |
+
|
13 |
#http://localhost:8000
|
14 |
app = FastAPI()
|
15 |
|
16 |
# Root route
|
17 |
@app.get('/')
|
18 |
+
def main():
|
19 |
return "Hello World taha"
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
@app.post('/predict')
|
23 |
async def predict(supported_types_str: str = Form(),age: str = Form() , file: UploadFile = File(...)):
|
index.html
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<html>
|
2 |
+
<body bgcolor="#00cccc">
|
3 |
+
<center>
|
4 |
+
<br><br><br>
|
5 |
+
<form action="https://taha454-backg.hf.space/predict" method="post" enctype="multipart/form-data">
|
6 |
+
<p><h3>Enter Image:</h3></p>
|
7 |
+
Name :<p><input type="text" name="supported_types_str" /></p><br>
|
8 |
+
Age :<p><input type="text" name="age" /></p><br>
|
9 |
+
File : <input type="file" name="file" required><br><br>
|
10 |
+
<p><input type="submit" value="submit" /></p>
|
11 |
+
</form>
|
12 |
+
</center>
|
13 |
+
</body>
|
14 |
+
</html>
|
requirements.txt
CHANGED
@@ -5,3 +5,7 @@ transformers
|
|
5 |
matplotlib
|
6 |
numpy
|
7 |
python-multipart
|
|
|
|
|
|
|
|
|
|
5 |
matplotlib
|
6 |
numpy
|
7 |
python-multipart
|
8 |
+
PIL
|
9 |
+
ultralytics
|
10 |
+
cv2
|
11 |
+
|
server.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL
|
2 |
+
from PIL import ImageDraw, ImageFont, Image ,ImageOps ,ImageFilter
|
3 |
+
from ultralytics import YOLO
|
4 |
+
import warnings
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import subprocess
|
8 |
+
import os
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
12 |
+
|
13 |
+
class SegmenterBackground():
|
14 |
+
def __init__(self) -> None:
|
15 |
+
self.segment_names = {} # This dictionary will store names for segments across multiple inferences
|
16 |
+
self.person=['person']
|
17 |
+
self.animal=[ 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear','zebra', 'giraffe']
|
18 |
+
self.drive=['bicycle','car','motorcycle', 'airplane', 'bus', 'train','truck','boat']
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
def predict_image(self,raw_image: Image):
|
23 |
+
model = YOLO("yolov8n-seg.pt")
|
24 |
+
class_names = model.names
|
25 |
+
results = model(raw_image)
|
26 |
+
return results, class_names
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def assign_segment_name(self,label, segment_id):
|
31 |
+
""" Assigns a unique name for each detected segment (e.g., Person 1, Person 2). """
|
32 |
+
if label not in self.segment_names:
|
33 |
+
self.segment_names[label] = {}
|
34 |
+
|
35 |
+
if segment_id not in self.segment_names[label]:
|
36 |
+
segment_count = len(self.segment_names[label]) + 1
|
37 |
+
self.segment_names[label][segment_id] = f"{label} {segment_count}"
|
38 |
+
|
39 |
+
return self.segment_names[label][segment_id]
|
40 |
+
|
41 |
+
|
42 |
+
def putMaskImage(self,raw_image,masks,background_image="remove",blur_radius=23):
|
43 |
+
combined_mask = np.max(masks, axis=0)
|
44 |
+
|
45 |
+
# Create mask for areas to replace
|
46 |
+
mask = combined_mask == True
|
47 |
+
|
48 |
+
# Ensure the mask has the same shape as the raw image (broadcast the mask to RGB channels)
|
49 |
+
mask_rgb = np.stack([mask] * 3, axis=-1)
|
50 |
+
|
51 |
+
# Initialize the output array as a copy of the background image
|
52 |
+
##outpt = np.array(background_image.copy())
|
53 |
+
if type(background_image)==PIL.Image.Image: # not PIL.JpegImagePlugin.JpegImageFile as resized
|
54 |
+
outpt = np.array(background_image.copy())
|
55 |
+
elif(background_image=="cam"):
|
56 |
+
outpt=np.array(raw_image.filter(ImageFilter.GaussianBlur(radius=blur_radius)))
|
57 |
+
else:#default ,say on "remove"
|
58 |
+
outpt=np.zeros_like(raw_image)
|
59 |
+
|
60 |
+
# Replace the background in the output image with the raw image where the mask is True
|
61 |
+
outpt[mask_rgb] = np.array(raw_image)[mask_rgb]
|
62 |
+
|
63 |
+
# Resize the output for better experience
|
64 |
+
outpt = Image.fromarray(outpt)
|
65 |
+
|
66 |
+
return outpt
|
67 |
+
|
68 |
+
|
69 |
+
def getFont(self):
|
70 |
+
try:
|
71 |
+
font = ImageFont.truetype("arial.ttf", size=20)
|
72 |
+
except IOError:
|
73 |
+
font = ImageFont.load_default()
|
74 |
+
return font
|
75 |
+
|
76 |
+
def Back_step1(self,raw_image: Image, background_image: Image,blur_radius=23):
|
77 |
+
org_size = raw_image.size
|
78 |
+
raw_image = raw_image.resize((640, 480))
|
79 |
+
if type(background_image) == PIL.JpegImagePlugin.JpegImageFile:
|
80 |
+
background_image = background_image.resize((640, 480))
|
81 |
+
label_counter = []
|
82 |
+
|
83 |
+
|
84 |
+
results, class_names = self.predict_image(raw_image)
|
85 |
+
|
86 |
+
masks = [results[0].masks.data[i].cpu().numpy() for i in range(len(results[0].masks.data))]
|
87 |
+
|
88 |
+
##### put masks on image
|
89 |
+
outpt = self.putMaskImage(raw_image,masks,background_image,blur_radius)
|
90 |
+
|
91 |
+
# Draw bounding boxes and labels
|
92 |
+
font=self.getFont()
|
93 |
+
draw = ImageDraw.Draw(outpt)
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
for box, label, seg_id in zip(results[0].boxes.xyxy.cpu().numpy(),
|
98 |
+
results[0].boxes.cls.cpu().numpy(),
|
99 |
+
range(len(results[0].boxes))): # segment_id for each box
|
100 |
+
label_name = class_names[int(label)]
|
101 |
+
|
102 |
+
# Assign a unique name for each detected object based on its segment
|
103 |
+
current_label = self.assign_segment_name(label_name, seg_id)
|
104 |
+
|
105 |
+
x1, y1, x2, y2 = map(int, box)
|
106 |
+
|
107 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
|
108 |
+
|
109 |
+
draw.text((x1, y1), current_label+" " + str(seg_id), fill="black", font=font)
|
110 |
+
|
111 |
+
label_counter.append(current_label)
|
112 |
+
|
113 |
+
return outpt.resize(org_size), label_counter
|
114 |
+
|
115 |
+
|
116 |
+
def Back_step2(self,raw_image:Image,background_image:Image,things_replace:list,blur_radius=23):
|
117 |
+
org_size = raw_image.size
|
118 |
+
raw_image = raw_image.resize((640, 480))
|
119 |
+
print(type(background_image))
|
120 |
+
if type(background_image)==PIL.JpegImagePlugin.JpegImageFile:
|
121 |
+
background_image = background_image.resize((640, 480))
|
122 |
+
|
123 |
+
|
124 |
+
results, class_names = self.predict_image(raw_image)
|
125 |
+
|
126 |
+
masks=[]
|
127 |
+
for segm, label,seg_id in zip(results[0].masks.data,results[0].boxes.cls.cpu().numpy(),range(len(results[0].boxes))):
|
128 |
+
label_name = class_names[int(label)]
|
129 |
+
current_label = self.assign_segment_name(label_name, seg_id)
|
130 |
+
|
131 |
+
if current_label in things_replace:
|
132 |
+
masks.append(segm.cpu().numpy())
|
133 |
+
|
134 |
+
masked_image=self.putMaskImage(raw_image,masks,background_image,blur_radius)
|
135 |
+
return masked_image.resize(org_size)
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
def get_labels(self,kind_back):
|
140 |
+
list_output=[]
|
141 |
+
|
142 |
+
if ('person' in kind_back):
|
143 |
+
list_output=list_output + self.person
|
144 |
+
if ('animal' in kind_back):
|
145 |
+
list_output=list_output + self.animal
|
146 |
+
if ('drive' in kind_back):
|
147 |
+
list_output=list_output + self.drive
|
148 |
+
|
149 |
+
return list_output
|
150 |
+
|
151 |
+
|
152 |
+
def Back_video_step1(self,video_path,output_path,background_image,kind_back,blur_radius=35):#background_image,what_remove,blur_radius=23): # back_image and video? #what_remove if many person it is not identify so same
|
153 |
+
cap = cv2.VideoCapture(video_path)
|
154 |
+
|
155 |
+
# Get video properties
|
156 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
157 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
158 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
159 |
+
#number_frames= int(cv2.CAP_PROP_FRAME_COUNT)
|
160 |
+
|
161 |
+
# Define the codec and create VideoWriter object to save the output video
|
162 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
163 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
164 |
+
if isinstance(background_image, Image.Image):
|
165 |
+
background_image = background_image.resize((640, 480))
|
166 |
+
|
167 |
+
|
168 |
+
sound_tmp_file='audio.mp3'
|
169 |
+
if os.path.exists(sound_tmp_file):# to not give error
|
170 |
+
os.remove(sound_tmp_file)
|
171 |
+
subprocess.run(['ffmpeg', '-i', video_path, '-q:a', '0', '-map', 'a',sound_tmp_file])
|
172 |
+
else:
|
173 |
+
subprocess.run(['ffmpeg', '-i', video_path, '-q:a', '0', '-map', 'a',sound_tmp_file])
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
i=0
|
178 |
+
while True:
|
179 |
+
|
180 |
+
ret, frame = cap.read()
|
181 |
+
if not ret:
|
182 |
+
break # End of video
|
183 |
+
|
184 |
+
# Convert the current frame to RGB
|
185 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
186 |
+
frame_rgb = Image.fromarray(np.array(frame_rgb))
|
187 |
+
org_size = frame_rgb.size
|
188 |
+
frame_rgb = frame_rgb.resize((640, 480))
|
189 |
+
|
190 |
+
results,class_names = self.predict_image(frame_rgb)
|
191 |
+
|
192 |
+
masks=[]
|
193 |
+
|
194 |
+
things_replace=self.get_labels(kind_back)
|
195 |
+
|
196 |
+
for segm, label in zip(results[0].masks.data,results[0].boxes.cls.cpu().numpy()):
|
197 |
+
label_name = class_names[int(label)]
|
198 |
+
|
199 |
+
if label_name in things_replace:
|
200 |
+
masks.append(segm.cpu().numpy())
|
201 |
+
|
202 |
+
masked_image = self.putMaskImage(frame_rgb,masks,background_image,blur_radius)
|
203 |
+
|
204 |
+
|
205 |
+
out.write(cv2.cvtColor(np.array(masked_image.resize(org_size)), cv2.COLOR_RGB2BGR))
|
206 |
+
|
207 |
+
print(f"Completed frame {i+1} ")
|
208 |
+
i=i+1
|
209 |
+
|
210 |
+
#if (i==10):
|
211 |
+
# break
|
212 |
+
|
213 |
+
print("Finished frames")
|
214 |
+
# adding original sound ,by extracting sound then put in new video
|
215 |
+
|
216 |
+
cap.release()
|
217 |
+
out.release()
|
218 |
+
cv2.destroyAllWindows()
|
219 |
+
|
220 |
+
|
221 |
+
#subprocess.run(['ffmpeg', '-i', output_path, '-i', 'audio.mp3', '-c:v', 'copy', '-c:a', 'aac', '-strict', 'experimental',"temp_output_video.mp4" ])
|
222 |
+
os.remove(sound_tmp_file)
|
223 |
+
|
224 |
+
|