Bloom_chat / app.py
tafxle's picture
stub
047c577
raw
history blame
723 Bytes
# import streamlit as st
# text = st.text_area("Prefix", value="DM: You enter the room.")
# batch = st.number_input("Variants", value=5)
# st.markdown(f"{text} {batch}")
import streamlit as st
from transformers import pipeline
from PIL import Image
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
st.title("Hot Dog? Or Not?")
file_name = st.file_uploader("Upload a hot dog candidate image")
if file_name is not None:
col1, col2 = st.columns(2)
image = Image.open(file_name)
col1.image(image, use_column_width=True)
predictions = pipeline(image)
col2.header("Probabilities")
for p in predictions:
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")