Spaces:
Sleeping
Sleeping
update
Browse files- app.py +37 -27
- requirements.txt +2 -1
app.py
CHANGED
@@ -16,6 +16,15 @@ all_origins = set()
|
|
16 |
all_labels = set()
|
17 |
dataset_df = None
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def process_image(i):
|
21 |
global all_origins
|
@@ -61,6 +70,26 @@ else:
|
|
61 |
dataset_df.to_pickle("dataset.pkl")
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def get_slice(origin, label):
|
65 |
global dataset_df
|
66 |
|
@@ -74,20 +103,11 @@ def get_slice(origin, label):
|
|
74 |
|
75 |
max_value = len(filtered_df) // 16
|
76 |
|
77 |
-
returned_values = []
|
78 |
-
|
79 |
start_index = 0
|
80 |
end_index = start_index + 16
|
81 |
|
82 |
slice_df = filtered_df.iloc[start_index:end_index]
|
83 |
-
|
84 |
-
for row in slice_df.itertuples():
|
85 |
-
returned_values.append(gr.update(value=row.preview))
|
86 |
-
returned_values.append(gr.update(value=row.origin))
|
87 |
-
returned_values.append(gr.update(value=row.labels))
|
88 |
-
|
89 |
-
if len(returned_values) < 48:
|
90 |
-
returned_values.extend([None] * (48 - len(returned_values)))
|
91 |
|
92 |
filtered_df = gr.Dataframe(filtered_df, datatype="markdown")
|
93 |
return filtered_df, gr.update(maximum=max_value, value=0), *returned_values
|
@@ -105,32 +125,22 @@ def make_grid(grid_size):
|
|
105 |
with gr.Column():
|
106 |
for col_counter in range(grid_size[1]):
|
107 |
item_image = gr.Image()
|
108 |
-
with gr.Accordion("Click for details", open=False):
|
109 |
-
|
110 |
-
item_labels = gr.Textbox(label="Labels")
|
111 |
|
112 |
list_of_components.append(item_image)
|
113 |
-
list_of_components.append(item_source)
|
114 |
-
list_of_components.append(item_labels)
|
115 |
|
116 |
return list_of_components
|
117 |
|
118 |
|
119 |
def slider_upadte(slider, df):
|
120 |
-
returned_values = []
|
121 |
-
|
122 |
start_index = (slider) * 16
|
123 |
end_index = start_index + 16
|
124 |
|
125 |
slice_df = df.iloc[start_index:end_index]
|
126 |
-
|
127 |
-
for row in slice_df.itertuples():
|
128 |
-
returned_values.append(gr.update(value=row.preview))
|
129 |
-
returned_values.append(gr.update(value=row.origin))
|
130 |
-
returned_values.append(gr.update(value=row.labels))
|
131 |
-
|
132 |
-
if len(returned_values) < 48:
|
133 |
-
returned_values.extend([None] * (48 - len(returned_values)))
|
134 |
|
135 |
return returned_values
|
136 |
|
@@ -153,12 +163,12 @@ with gr.Blocks() as demo:
|
|
153 |
|
154 |
with gr.Row():
|
155 |
origin_dropdown = gr.Dropdown(all_origins, label="Origin")
|
156 |
-
label_dropdown = gr.Dropdown(all_labels, label="
|
157 |
with gr.Row():
|
158 |
show_btn = gr.Button("Show")
|
159 |
reset_filters = gr.Button("Reset Filters")
|
160 |
|
161 |
-
preview_dataframe = gr.Dataframe(
|
162 |
|
163 |
gr.Markdown("## Preview")
|
164 |
|
|
|
16 |
all_labels = set()
|
17 |
dataset_df = None
|
18 |
|
19 |
+
beautiful_dataset_names = {
|
20 |
+
"imagenet": "ImageNet",
|
21 |
+
"imagenet_a": "ImageNet-A",
|
22 |
+
"imagenet_r": "ImageNet-R",
|
23 |
+
"imagenet_sketch": "ImageNet-Sketch",
|
24 |
+
"objectnet": "ObjectNet",
|
25 |
+
"imagenet_v2": "ImageNet-V2",
|
26 |
+
}
|
27 |
+
|
28 |
|
29 |
def process_image(i):
|
30 |
global all_origins
|
|
|
70 |
dataset_df.to_pickle("dataset.pkl")
|
71 |
|
72 |
|
73 |
+
def get_values_for_the_slice(slice_df):
|
74 |
+
returned_values = []
|
75 |
+
for row in slice_df.itertuples():
|
76 |
+
# returned_values.append(gr.update(value=row.preview))
|
77 |
+
labels = ", ".join(row.labels)
|
78 |
+
# replace _ with space
|
79 |
+
labels = labels.replace("_", " ")
|
80 |
+
|
81 |
+
dataset_name = beautiful_dataset_names[row.origin]
|
82 |
+
|
83 |
+
label_string = f"{labels} - ({dataset_name})"
|
84 |
+
returned_values.append(gr.update(label=label_string, value=row.preview))
|
85 |
+
# returned_values.append(gr.update(value=beautiful_dataset_names[row.origin]))
|
86 |
+
|
87 |
+
if len(returned_values) < 16:
|
88 |
+
returned_values.extend([None] * (16 - len(returned_values)))
|
89 |
+
|
90 |
+
return returned_values
|
91 |
+
|
92 |
+
|
93 |
def get_slice(origin, label):
|
94 |
global dataset_df
|
95 |
|
|
|
103 |
|
104 |
max_value = len(filtered_df) // 16
|
105 |
|
|
|
|
|
106 |
start_index = 0
|
107 |
end_index = start_index + 16
|
108 |
|
109 |
slice_df = filtered_df.iloc[start_index:end_index]
|
110 |
+
returned_values = get_values_for_the_slice(slice_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
filtered_df = gr.Dataframe(filtered_df, datatype="markdown")
|
113 |
return filtered_df, gr.update(maximum=max_value, value=0), *returned_values
|
|
|
125 |
with gr.Column():
|
126 |
for col_counter in range(grid_size[1]):
|
127 |
item_image = gr.Image()
|
128 |
+
# with gr.Accordion("Click for details", open=False):
|
129 |
+
# item_source = gr.Textbox(label="Source Dataset")
|
|
|
130 |
|
131 |
list_of_components.append(item_image)
|
132 |
+
# list_of_components.append(item_source)
|
133 |
+
# list_of_components.append(item_labels)
|
134 |
|
135 |
return list_of_components
|
136 |
|
137 |
|
138 |
def slider_upadte(slider, df):
|
|
|
|
|
139 |
start_index = (slider) * 16
|
140 |
end_index = start_index + 16
|
141 |
|
142 |
slice_df = df.iloc[start_index:end_index]
|
143 |
+
returned_values = get_values_for_the_slice(slice_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
return returned_values
|
146 |
|
|
|
163 |
|
164 |
with gr.Row():
|
165 |
origin_dropdown = gr.Dropdown(all_origins, label="Origin")
|
166 |
+
label_dropdown = gr.Dropdown(all_labels, label="Category")
|
167 |
with gr.Row():
|
168 |
show_btn = gr.Button("Show")
|
169 |
reset_filters = gr.Button("Reset Filters")
|
170 |
|
171 |
+
preview_dataframe = gr.Dataframe(visible=False)
|
172 |
|
173 |
gr.Markdown("## Preview")
|
174 |
|
requirements.txt
CHANGED
@@ -2,4 +2,5 @@ transformers
|
|
2 |
datasets
|
3 |
tqdm
|
4 |
numpy
|
5 |
-
pandas
|
|
|
|
2 |
datasets
|
3 |
tqdm
|
4 |
numpy
|
5 |
+
pandas
|
6 |
+
tqdm
|