taesiri's picture
upgrade to claude 2.0
e6b26e0
raw
history blame
7.58 kB
import io
import os
import re
import tarfile
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
import gradio as gr
import requests
import arxiv
def replace_texttt(text):
return re.sub(r"\\texttt\{(.*?)\}", r"*\1*", text)
def get_paper_info(paper_id):
# Create a search query with the arXiv ID
search = arxiv.Search(id_list=[paper_id])
# Fetch the paper using its arXiv ID
paper = next(search.results(), None)
if paper is not None:
# Return the paper's title and abstract
return paper.title, paper.summary
else:
return None, None
def download_arxiv_source(paper_id):
url = f"https://arxiv.org/e-print/{paper_id}"
# Get the tar file
response = requests.get(url)
response.raise_for_status()
# Open the tar file
tar = tarfile.open(fileobj=io.BytesIO(response.content), mode="r")
# Load all .tex files into memory, including their subdirectories
tex_files = {
member.name: tar.extractfile(member).read().decode("utf-8")
for member in tar.getmembers()
if member.name.endswith(".tex")
}
# Load all .tex files into memory, including their subdirectories
tex_files = {
member.name: tar.extractfile(member).read().decode("utf-8")
for member in tar.getmembers()
if member.isfile() and member.name.endswith(".tex")
}
# Pattern to match \input{filename} and \include{filename}
pattern = re.compile(r"\\(input|include){(.*?)}")
# Function to replace \input{filename} and \include{filename} with file contents
def replace_includes(text):
output = []
for line in text.split("\n"):
match = re.search(pattern, line)
if match:
command, filename = match.groups()
# LaTeX automatically adds .tex extension for \input and \include commands
if not filename.endswith(".tex"):
filename += ".tex"
if filename in tex_files:
output.append(replace_includes(tex_files[filename]))
else:
output.append(f"% {line} % FILE NOT FOUND")
else:
output.append(line)
return "\n".join(output)
if "main.tex" in tex_files:
# Start with the contents of main.tex
main_tex = replace_includes(tex_files["main.tex"])
else:
# No main.tex, concatenate all .tex files
main_tex = "\n".join(replace_includes(text) for text in tex_files.values())
return main_tex
class ContextualQA:
def __init__(self, client, model="claude-2.0"):
self.client = client
self.model = model
self.context = ""
self.questions = []
self.responses = []
def load_text(self, text):
self.context = text
def ask_question(self, question):
leading_prompt = "Give the following paper:"
trailing_prompt = "Now, answer the following question based on the content of the paper above. You can optionally use Markdown to format your answer or LaTeX typesetting to improve the presentation of your answer."
prompt = f"{HUMAN_PROMPT} {leading_prompt} {self.context} {trailing_prompt} {HUMAN_PROMPT} {question} {AI_PROMPT}"
response = self.client.completions.create(
prompt=prompt,
stop_sequences=[HUMAN_PROMPT],
max_tokens_to_sample=6000,
model=self.model,
stream=False,
)
answer = response.completion
self.questions.append(question)
self.responses.append(answer)
return answer
def clear_context(self):
self.context = ""
self.questions = []
self.responses = []
def __getstate__(self):
state = self.__dict__.copy()
del state["client"]
return state
def __setstate__(self, state):
self.__dict__.update(state)
self.client = None
def load_context(paper_id):
try:
latex_source = download_arxiv_source(paper_id)
except Exception as e:
return None, [(f"Error loading paper with id {paper_id}.", str(e))]
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model = ContextualQA(client, model="claude-2.0")
qa_model.load_text(latex_source)
# Usage
title, abstract = get_paper_info(paper_id)
# remove special symbols from title and abstract
title = replace_texttt(title)
abstract = replace_texttt(abstract)
return (
qa_model,
[
(
f"Load the paper with id {paper_id}.",
f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded, You can now ask questions.",
)
],
)
def answer_fn(qa_model, question, chat_history):
# if question is empty, tell user that they need to ask a question
if question == "":
chat_history.append(("No Question Asked", "Please ask a question."))
return qa_model, chat_history, ""
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
qa_model.client = client
try:
answer = qa_model.ask_question(question)
except Exception as e:
chat_history.append(("Error Asking Question", str(e)))
return qa_model, chat_history, ""
chat_history.append((question, answer))
return qa_model, chat_history, ""
def clear_context():
return []
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"# Explore ArXiv Papers in Depth with `claude-2.0` - Ask Questions and Receive Detailed Answers Instantly"
)
gr.Markdown(
"Dive into the world of academic papers with our dynamic app, powered by the cutting-edge `claude-2.0` model. This app allows you to ask detailed questions about any ArXiv paper and receive direct answers from the paper's content. Utilizing a context length of 100k tokens, it provides an efficient and comprehensive exploration of complex research studies, making knowledge acquisition simpler and more interactive. (This text is generated by GPT-4 )"
)
gr.HTML(
"""<center>All the inputs are being sent to Anthropic's Claude endpoints. Please refer to <a href="https://legal.anthropic.com/#privacy">this link</a> for privacy policy.</center>"""
)
gr.HTML(
"""<center><a href="https://huggingface.co/spaces/taesiri/ClaudeReadsArxiv?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your Anthropic API Key </center>"""
)
with gr.Column():
with gr.Row():
paper_id_input = gr.Textbox(label="Enter Paper ID", value="2108.07258")
btn_load = gr.Button("Load Paper")
qa_model = gr.State()
with gr.Column():
chatbot = gr.Chatbot().style(color_map=("blue", "yellow"))
question_txt = gr.Textbox(
label="Question", lines=1, placeholder="Type your question here..."
)
btn_answer = gr.Button("Answer Question")
btn_clear = gr.Button("Clear Chat")
btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot])
btn_answer.click(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
question_txt.submit(
answer_fn,
inputs=[qa_model, question_txt, chatbot],
outputs=[qa_model, chatbot, question_txt],
)
btn_clear.click(clear_context, outputs=[chatbot])
demo.launch()