Spaces:
Paused
Paused
import io | |
import os | |
import re | |
import tarfile | |
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic | |
import gradio as gr | |
import requests | |
import arxiv | |
def replace_texttt(text): | |
return re.sub(r"\\texttt\{(.*?)\}", r"*\1*", text) | |
def get_paper_info(paper_id): | |
# Create a search query with the arXiv ID | |
search = arxiv.Search(id_list=[paper_id]) | |
# Fetch the paper using its arXiv ID | |
paper = next(search.results(), None) | |
if paper is not None: | |
# Return the paper's title and abstract | |
return paper.title, paper.summary | |
else: | |
return None, None | |
def download_arxiv_source(paper_id): | |
url = f"https://arxiv.org/e-print/{paper_id}" | |
# Get the tar file | |
response = requests.get(url) | |
response.raise_for_status() | |
# Open the tar file | |
tar = tarfile.open(fileobj=io.BytesIO(response.content), mode="r") | |
# Load all .tex files into memory, including their subdirectories | |
tex_files = { | |
member.name: tar.extractfile(member).read().decode("utf-8") | |
for member in tar.getmembers() | |
if member.name.endswith(".tex") | |
} | |
# Load all .tex files into memory, including their subdirectories | |
tex_files = { | |
member.name: tar.extractfile(member).read().decode("utf-8") | |
for member in tar.getmembers() | |
if member.isfile() and member.name.endswith(".tex") | |
} | |
# Pattern to match \input{filename} and \include{filename} | |
pattern = re.compile(r"\\(input|include){(.*?)}") | |
# Function to replace \input{filename} and \include{filename} with file contents | |
def replace_includes(text): | |
output = [] | |
for line in text.split("\n"): | |
match = re.search(pattern, line) | |
if match: | |
command, filename = match.groups() | |
# LaTeX automatically adds .tex extension for \input and \include commands | |
if not filename.endswith(".tex"): | |
filename += ".tex" | |
if filename in tex_files: | |
output.append(replace_includes(tex_files[filename])) | |
else: | |
output.append(f"% {line} % FILE NOT FOUND") | |
else: | |
output.append(line) | |
return "\n".join(output) | |
if "main.tex" in tex_files: | |
# Start with the contents of main.tex | |
main_tex = replace_includes(tex_files["main.tex"]) | |
else: | |
# No main.tex, concatenate all .tex files | |
main_tex = "\n".join(replace_includes(text) for text in tex_files.values()) | |
return main_tex | |
class ContextualQA: | |
def __init__(self, client, model="claude-2.0"): | |
self.client = client | |
self.model = model | |
self.context = "" | |
self.questions = [] | |
self.responses = [] | |
def load_text(self, text): | |
self.context = text | |
def ask_question(self, question): | |
leading_prompt = "Give the following paper:" | |
trailing_prompt = "Now, answer the following question based on the content of the paper above. You can optionally use Markdown to format your answer or LaTeX typesetting to improve the presentation of your answer." | |
prompt = f"{HUMAN_PROMPT} {leading_prompt} {self.context} {trailing_prompt} {HUMAN_PROMPT} {question} {AI_PROMPT}" | |
response = self.client.completions.create( | |
prompt=prompt, | |
stop_sequences=[HUMAN_PROMPT], | |
max_tokens_to_sample=6000, | |
model=self.model, | |
stream=False, | |
) | |
answer = response.completion | |
self.questions.append(question) | |
self.responses.append(answer) | |
return answer | |
def clear_context(self): | |
self.context = "" | |
self.questions = [] | |
self.responses = [] | |
def __getstate__(self): | |
state = self.__dict__.copy() | |
del state["client"] | |
return state | |
def __setstate__(self, state): | |
self.__dict__.update(state) | |
self.client = None | |
def load_context(paper_id): | |
try: | |
latex_source = download_arxiv_source(paper_id) | |
except Exception as e: | |
return None, [(f"Error loading paper with id {paper_id}.", str(e))] | |
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) | |
qa_model = ContextualQA(client, model="claude-2.0") | |
qa_model.load_text(latex_source) | |
# Usage | |
title, abstract = get_paper_info(paper_id) | |
# remove special symbols from title and abstract | |
title = replace_texttt(title) | |
abstract = replace_texttt(abstract) | |
return ( | |
qa_model, | |
[ | |
( | |
f"Load the paper with id {paper_id}.", | |
f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded, You can now ask questions.", | |
) | |
], | |
) | |
def answer_fn(qa_model, question, chat_history): | |
# if question is empty, tell user that they need to ask a question | |
if question == "": | |
chat_history.append(("No Question Asked", "Please ask a question.")) | |
return qa_model, chat_history, "" | |
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) | |
qa_model.client = client | |
try: | |
answer = qa_model.ask_question(question) | |
except Exception as e: | |
chat_history.append(("Error Asking Question", str(e))) | |
return qa_model, chat_history, "" | |
chat_history.append((question, answer)) | |
return qa_model, chat_history, "" | |
def clear_context(): | |
return [] | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
"# Explore ArXiv Papers in Depth with `claude-2.0` - Ask Questions and Receive Detailed Answers Instantly" | |
) | |
gr.Markdown( | |
"Dive into the world of academic papers with our dynamic app, powered by the cutting-edge `claude-2.0` model. This app allows you to ask detailed questions about any ArXiv paper and receive direct answers from the paper's content. Utilizing a context length of 100k tokens, it provides an efficient and comprehensive exploration of complex research studies, making knowledge acquisition simpler and more interactive. (This text is generated by GPT-4 )" | |
) | |
gr.HTML( | |
"""<center>All the inputs are being sent to Anthropic's Claude endpoints. Please refer to <a href="https://legal.anthropic.com/#privacy">this link</a> for privacy policy.</center>""" | |
) | |
gr.HTML( | |
"""<center><a href="https://huggingface.co/spaces/taesiri/ClaudeReadsArxiv?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your Anthropic API Key </center>""" | |
) | |
with gr.Column(): | |
with gr.Row(): | |
paper_id_input = gr.Textbox(label="Enter Paper ID", value="2108.07258") | |
btn_load = gr.Button("Load Paper") | |
qa_model = gr.State() | |
with gr.Column(): | |
chatbot = gr.Chatbot().style(color_map=("blue", "yellow")) | |
question_txt = gr.Textbox( | |
label="Question", lines=1, placeholder="Type your question here..." | |
) | |
btn_answer = gr.Button("Answer Question") | |
btn_clear = gr.Button("Clear Chat") | |
btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot]) | |
btn_answer.click( | |
answer_fn, | |
inputs=[qa_model, question_txt, chatbot], | |
outputs=[qa_model, chatbot, question_txt], | |
) | |
question_txt.submit( | |
answer_fn, | |
inputs=[qa_model, question_txt, chatbot], | |
outputs=[qa_model, chatbot, question_txt], | |
) | |
btn_clear.click(clear_context, outputs=[chatbot]) | |
demo.launch() | |