|
import os |
|
from langchain.llms import OpenAI, OpenAIChat |
|
|
|
os.system("pip install -U gradio") |
|
|
|
import sys |
|
import gradio as gr |
|
|
|
os.system( |
|
"pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html" |
|
) |
|
|
|
|
|
os.system( |
|
"git clone https://github.com/facebookresearch/Detic.git --recurse-submodules" |
|
) |
|
os.chdir("Detic") |
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
import detectron2 |
|
from detectron2.utils.logger import setup_logger |
|
|
|
setup_logger() |
|
|
|
|
|
import sys |
|
import numpy as np |
|
import os, json, cv2, random |
|
|
|
|
|
from detectron2 import model_zoo |
|
from detectron2.engine import DefaultPredictor |
|
from detectron2.config import get_cfg |
|
from detectron2.utils.visualizer import Visualizer |
|
from detectron2.data import MetadataCatalog, DatasetCatalog |
|
|
|
|
|
sys.path.insert(0, "third_party/CenterNet2/projects/CenterNet2/") |
|
sys.path.insert(0, "third_party/CenterNet2/") |
|
from centernet.config import add_centernet_config |
|
from detic.config import add_detic_config |
|
from detic.modeling.utils import reset_cls_test |
|
|
|
from PIL import Image |
|
|
|
|
|
cfg = get_cfg() |
|
add_centernet_config(cfg) |
|
add_detic_config(cfg) |
|
cfg.MODEL.DEVICE = "cpu" |
|
cfg.merge_from_file("configs/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.yaml") |
|
cfg.MODEL.WEIGHTS = "https://dl.fbaipublicfiles.com/detic/Detic_LCOCOI21k_CLIP_SwinB_896b32_4x_ft4x_max-size.pth" |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 |
|
cfg.MODEL.ROI_BOX_HEAD.ZEROSHOT_WEIGHT_PATH = "rand" |
|
cfg.MODEL.ROI_HEADS.ONE_CLASS_PER_PROPOSAL = ( |
|
True |
|
) |
|
predictor = DefaultPredictor(cfg) |
|
|
|
BUILDIN_CLASSIFIER = { |
|
"lvis": "datasets/metadata/lvis_v1_clip_a+cname.npy", |
|
"objects365": "datasets/metadata/o365_clip_a+cnamefix.npy", |
|
"openimages": "datasets/metadata/oid_clip_a+cname.npy", |
|
"coco": "datasets/metadata/coco_clip_a+cname.npy", |
|
} |
|
|
|
BUILDIN_METADATA_PATH = { |
|
"lvis": "lvis_v1_val", |
|
"objects365": "objects365_v2_val", |
|
"openimages": "oid_val_expanded", |
|
"coco": "coco_2017_val", |
|
} |
|
|
|
session_token = os.environ.get("SessionToken") |
|
|
|
|
|
def generate_caption(object_list_str, api_key, temperature): |
|
query = f"You are an intelligent image captioner. I will hand you the objects and their position, and you should give me a detailed description for the photo. In this photo we have the following objects\n{object_list_str}" |
|
llm = OpenAIChat( |
|
model_name="gpt-3.5-turbo", openai_api_key=api_key, temperature=temperature |
|
) |
|
|
|
try: |
|
caption = llm(query) |
|
caption = caption.strip() |
|
except: |
|
caption = "Sorry, something went wrong!" |
|
|
|
return caption |
|
|
|
|
|
def inference(img, vocabulary, api_key, temperature): |
|
metadata = MetadataCatalog.get(BUILDIN_METADATA_PATH[vocabulary]) |
|
classifier = BUILDIN_CLASSIFIER[vocabulary] |
|
num_classes = len(metadata.thing_classes) |
|
reset_cls_test(predictor.model, classifier, num_classes) |
|
|
|
im = cv2.imread(img) |
|
|
|
outputs = predictor(im) |
|
v = Visualizer(im[:, :, ::-1], metadata) |
|
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) |
|
|
|
detected_objects = [] |
|
object_list_str = [] |
|
|
|
box_locations = outputs["instances"].pred_boxes |
|
box_loc_screen = box_locations.tensor.cpu().numpy() |
|
|
|
for i, box_coord in enumerate(box_loc_screen): |
|
x0, y0, x1, y1 = box_coord |
|
width = x1 - x0 |
|
height = y1 - y0 |
|
predicted_label = metadata.thing_classes[outputs["instances"].pred_classes[i]] |
|
detected_objects.append( |
|
{ |
|
"prediction": predicted_label, |
|
"x": int(x0), |
|
"y": int(y0), |
|
"w": int(width), |
|
"h": int(height), |
|
} |
|
) |
|
object_list_str.append( |
|
f"{predicted_label} - X:({int(x0)} Y: {int(y0)} Width {int(width)} Height: {int(height)})" |
|
) |
|
|
|
if api_key is not None: |
|
gpt_response = generate_caption(object_list_str, api_key, temperature) |
|
else: |
|
gpt_response = "Please paste your OpenAI key to use" |
|
|
|
return ( |
|
Image.fromarray(np.uint8(out.get_image())).convert("RGB"), |
|
gpt_response, |
|
) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.Markdown("# Image Captioning using Detic and ChatGPT with LangChain 🦜️🔗") |
|
gr.Markdown( |
|
"Use Detic to detect objects in an image and then use `gpt-3.5-turbo` to describe the image." |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
inp = gr.Image(label="Input Image", type="filepath") |
|
with gr.Column(): |
|
openai_api_key_textbox = gr.Textbox( |
|
placeholder="Paste your OpenAI API key (sk-...)", |
|
show_label=False, |
|
lines=1, |
|
type="password", |
|
) |
|
temperature = gr.Slider(0, 1, 0.1, label="Temperature") |
|
vocab = gr.Dropdown( |
|
["lvis", "objects365", "openimages", "coco"], |
|
label="Detic Vocabulary", |
|
value="lvis", |
|
) |
|
|
|
btn_detic = gr.Button("Run Detic and ChatGPT") |
|
with gr.Column(): |
|
output_desc = gr.Textbox(label="Description Description", lines=5) |
|
outviz = gr.Image(label="Visualization", type="pil") |
|
|
|
btn_detic.click( |
|
fn=inference, |
|
inputs=[inp, vocab, openai_api_key_textbox, temperature], |
|
outputs=[outviz, output_desc], |
|
) |
|
|
|
|
|
demo.launch(debug=False) |
|
|