taesiri commited on
Commit
0f45999
1 Parent(s): 57a6685
Files changed (1) hide show
  1. app.py +9 -25
app.py CHANGED
@@ -28,35 +28,19 @@ check_environment()
28
  login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
29
 
30
  # Load model and processor (do this outside the inference function to avoid reloading)
31
- base_model_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Instruct-Medium-FullModel"
 
 
32
  # lora_weights_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Base-Medium-LoRA"
33
 
34
- # processor = AutoProcessor.from_pretrained(base_model_path)
35
- # model = MllamaForConditionalGeneration.from_pretrained(
36
- # base_model_path,
37
- # torch_dtype=torch.bfloat16,
38
- # device_map="cuda",
39
- # )
40
-
41
- from transformers import AutoModelForCausalLM, AutoProcessor, LlamaTokenizer
42
- import torch
43
-
44
- model_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Instruct-Medium-FullModel"
45
-
46
- # Load the processor (handles both text and vision inputs)
47
- processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
48
-
49
- # Load the model
50
- model = AutoModelForCausalLM.from_pretrained(
51
- model_path, torch_dtype=torch.bfloat16, device_map="cuda", trust_remote_code=True
52
  )
53
-
54
- # If you specifically need the tokenizer
55
- tokenizer = LlamaTokenizer.from_pretrained(model_path)
56
-
57
- model.tie_weights()
58
-
59
  # model = PeftModel.from_pretrained(model, lora_weights_path)
 
60
 
61
 
62
  def describe_image_in_JSON(json_string):
 
28
  login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
29
 
30
  # Load model and processor (do this outside the inference function to avoid reloading)
31
+ base_model_path = (
32
+ "taesiri/BugsBunny-LLama-3.2-11B-Vision-BaseCaptioner-Medium-FullModel"
33
+ )
34
  # lora_weights_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Base-Medium-LoRA"
35
 
36
+ processor = AutoProcessor.from_pretrained(base_model_path)
37
+ model = MllamaForConditionalGeneration.from_pretrained(
38
+ base_model_path,
39
+ torch_dtype=torch.bfloat16,
40
+ device_map="cuda",
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  )
 
 
 
 
 
 
42
  # model = PeftModel.from_pretrained(model, lora_weights_path)
43
+ model.tie_weights()
44
 
45
 
46
  def describe_image_in_JSON(json_string):